A Declarative Debugging System for Lazy Functional Logic Programs

Rafael Caballero ${ }^{1,2}$ Mario Rodríguez-Artalejo ${ }^{1,3}$
Dep. Sistemas Informáticos y Programación
Universidad Complutense Madrid
Madrid, Spain

Abstract

We present a declarative debugger for lazy functional logic programs with polymorphic type discipline. Whenever a computed answer is considered wrong by the user (error symptom), the debugger locates a program fragment (function defining rule) responsible for the error. The notions of symptom and error have a declarative meaning w.r.t. to an intended program semantics. Debugging is performed by searching in a computation tree which is a logical representation of the computation. Following a known technique, our tool is based on a program transformation: transformed programs return computation trees along with the results expected by source programs. Our transformation is provably correct w.r.t. well-typing and program semantics. As additional improvements w.r.t. related approaches, we solve a previously open problem concerning the use of curried functions, and we provide a correct method for avoiding redundant questions to the user during debugging. A prototype implementation of the debugger is available. Case studies and extensions are planned as future work.

1 Introduction

The impact of declarative languages on practical applications is inhibited by many known factors, including the lack of debugging tools, whose construction is recognized as difficult for lazy functional languages. As argued in [29], such debuggers are needed, and much of interest can still be learned from their construction and use. Debugging tools for lazy functional logic languages [11] are even harder to construct.

[^0]A promising approach is declarative debugging, which starts from a computation considered incorrect by the user (error symptom) and locates a program fragment responsible for the error. In the case of (constraint) logic programs, error symptoms can be either wrong or missing computed answers [26,13,6,17,28]. Declarative debugging has been also adapted to lazy functional programming [21,22,23,27,18,20,25] and combined functional logic programming [19]. All these approaches use a computation tree (CT) [19] as logical representation of the computation. Each node in a CT represents the result of a computation step, which must follow from the results of its children nodes by some logical inference. Diagnosis proceeds by traversing the CT, asking questions to an external oracle (generally the user) until a so-called buggy node is found, whose result is erroneous, but whose children have all correct results. The user does not need to understand the computation operationally. Any buggy node represents an erroneous computation step, an the debugger can display the program fragment responsible for it. From an explanatory point of view, declarative debugging can be described as consisting of two stages, namely CT generation and CT navigation [22].
We present a declarative debugger of wrong answers for lazy functional logic programs with polymorphic type discipline. Following a known idea [22,20,25], we use a program transformation for CT generation. We give a careful specification of the transformation, we show its advantages w.r.t. previous related ones, and we describe some new techniques which allow to avoid redundant questions to the oracle during the navigation phase. The debugger has been implemented as part of the $\mathcal{T} \mathcal{O} \mathcal{Y}$ system [14]; a prototype version can be downloaded from http://titan.sip.ucm.es/toy/. Case studies and extensions of the debugger are planned as future work.
A known extension of declarative debugging is abstract diagnosis [3,1], leading to equivalent bottom-up and top-down diagnosis methods which do not require error symptoms to be given in advance. In order to be effectively implemented, abstract diagnosis uses abstract interpretation techniques to build a finite abstraction of the intended program semantics. These methods are outside the scope of this paper.
The rest of the paper is organized as follows: Section 2 recalls preliminary notions and previous results about functional logic programming and declarative debugging. Section 3 summarizes our new contributions w.r.t. previous related works. Our approaches to CT generation and navigation, with detailed explanations of the new contributions, are presented in Sections 4 and 5, respectively. Conclusions and plans for future work are summarized in Section 6. Detailed proofs of the main results are included in the Appendix A, while Appendix B includes some simple debugging sessions.

2 Preliminaries

Functional Logic Programming (FLP for short) aims at the integration of the best features of current functional and logic languages; see [11] for a survey. This paper deals with declarative debugging for lazy FLP languages such as Curry or $\mathcal{T} \mathcal{O} \mathcal{Y}$ [12,14], which include pure LP and lazy FP programs as particular cases. In this section we recall the basic facts about syntax, type discipline and declarative semantics for lazy FLP programs. We follow the formalization given in [9], but using the concrete syntax of $\mathcal{T \mathcal { O }}$ for program examples.

2.1 Types, Expressions and Substitutions

2.1.1 Types and Signatures

We assume a countable set TVar of type variables α, β, \ldots and a countable ranked alphabet $T C=\bigcup_{n \in \mathbb{N}} T C^{n}$ of type constructors C. Types $\tau \in$ Type have the syntax

$$
\tau::=\alpha \quad(\alpha \in T \text { Var })\left|\left(C \tau_{1} \ldots \tau_{n}\right) \quad\left(C \in T C^{n}\right)\right|\left(\tau \rightarrow \tau^{\prime}\right) \mid\left(\tau_{1}, \ldots, \tau_{n}\right)
$$

By convention, $C \bar{\tau}_{n}$ abbreviates $\left(C \tau_{1} \ldots \tau_{n}\right)$, " \rightarrow " associates to the right, $\bar{\tau}_{n} \rightarrow \tau$ abbreviates $\tau_{1} \rightarrow \cdots \rightarrow \tau_{n} \rightarrow \tau$, and the set of type variables occurring in τ is written $\operatorname{tvar}(\tau)$. A type τ is called monomorphic iff $\operatorname{tvar}(\tau)=\emptyset$, and polymorphic otherwise. A type without any occurrence of " \rightarrow " is called a datatype.
A polymorphic signature over $T C$ is a triple $\Sigma=\langle T C, D C, F S\rangle$, where $D C=\bigcup_{n \in \mathbb{N}} D C^{n}$ and $F S=\bigcup_{n \in \mathbb{N}} F S^{n}$ are ranked sets of data constructors resp. defined function symbols. Each n-ary $c \in D C^{n}$ comes with a principal type declaration $c:: \bar{\tau}_{n} \rightarrow C \bar{\alpha}_{k}$, where $n, k \geq 0, \alpha_{1}, \ldots, \alpha_{k}$ are pairwise different, τ_{i} are datatypes, and $\operatorname{tvar}\left(\tau_{i}\right) \subseteq\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$ for all $1 \leq i \leq n$ (so-called transparency property). Also, every n-ary $f \in F S^{n}$ comes with a principal type declaration $f:: \bar{\tau}_{n} \rightarrow \tau$, where τ_{i}, τ are arbitrary types. In practice, each FLP program P has a signature which corresponds to the type declarations occurring in P. For any signature Σ, we write Σ_{\perp} for the result of extending Σ with a new data constructor $\perp:: \alpha$, intended to represent an undefined value that belongs to every type. As notational conventions, we use $c, d \in D C, f, g \in F S$ and $h \in D C \cup F S$, and we define the arity of $h \in D C^{n} \cup F S^{n}$ as $\operatorname{ar}(h)=n$.

2.1.2 Expressions and Patterns

In the sequel, we always suppose a given signature Σ, often not made explicit in the notation. Assuming a countable set Var of (data) variables X, Y, \ldots disjoint from TVar and Σ, partial expressions $e \in E x p_{\perp}$ have the syntax

$$
e::=\perp|X| h\left|\left(e e^{\prime}\right)\right|\left(e_{1}, \ldots, e_{n}\right)
$$

where $X \in \operatorname{Var}, h \in D C \cup F S$. Expressions of the form $\left(e e^{\prime}\right)$ stand for the application of expression e (acting as a function) to expression e^{\prime} (acting as an argument), while expressions (e_{1}, \ldots, e_{n}) represent tuples with n components. As usual, we assume that application associates to the left and thus $\left(e_{0} e_{1} \ldots e_{n}\right)$ abbreviates $\left(\left(\ldots\left(e_{0} e_{1}\right) \ldots\right) e_{n}\right)$. The set of data variables occurring in e is written $\operatorname{var}(e)$. An expression e is called closed iff $\operatorname{var}(e)=\emptyset$, and open otherwise. Moreover, e is called linear iff every $X \in \operatorname{var}(e)$ has one single occurrence in e. Partial patterns $t \in P a t_{\perp} \subset E x p_{\perp}$ are built as

$$
t::=\perp|X| c t_{1} \ldots t_{m}\left|f t_{1} \ldots t_{m}\right|\left(t_{1}, \ldots, t_{n}\right)
$$

where $X \in \operatorname{Var}, c \in D C^{n}, 0 \leq m \leq n, f \in F S^{n}, 0 \leq m<n$ and t_{i} partial patterns for all $1 \leq i \leq m$. They represent approximations of the values of expressions. Following the spirit of denotational semantics [10], we view $P a t_{\perp}$ as the set of finite elements of a semantic domain, and we define the approximation ordering \sqsubseteq as the least partial ordering over $P a t_{\perp}$ satisfying the following properties:

- $\perp \sqsubseteq t$, for all $t \in P a t_{\perp}$.
- $h \bar{t}_{m} \sqsubseteq h \bar{s}_{m}$ whenever these two expressions are patterns and $t_{i} \sqsubseteq s_{i}$ for all $1 \leq i \leq m$.
- $\left(t_{1}, \ldots, t_{n}\right) \sqsubseteq\left(s_{1}, \ldots, s_{n}\right)$ whenever $t_{i}, s_{i} \in P a t_{\perp}, t_{i} \sqsubseteq s_{i}$ for all $1 \leq i \leq m$.
$P a t_{\perp}$, and more generally any partially ordered set (shortly, poset), can be converted into a semantic domain by means of a technique called ideal completion; see e.g. [16].

Partial patterns of the form $f t_{1} \ldots t_{m}$ with $f \in F S^{n}$ and $m<n$ serve as a convenient representation of functions as values; see [9]. Expressions and patterns without any occurrence of \perp are called total. We write Exp and Pat for the sets of total expressions and patterns, respectively. Actually, the symbol \perp never occurs in a program's text; but it may occur in a debugging session, as we will see.

2.1.3 Substitutions

A total substitution is a mapping $\theta: \operatorname{Var} \rightarrow P a t$ with a unique extension $\hat{\theta}$: $E x p \rightarrow E x p$, which will be noted also as θ. The set of all substitutions is noted as Subst. The set of all the partial substitutions $\theta: \operatorname{Var} \rightarrow P a t_{\perp}$ is denoted as Subst \perp_{\perp} and defined analogously. We define the $\operatorname{domain} \operatorname{dom}(\theta)$ as the set of all variables X s.t. $\theta(X) \neq X$, and the range $\operatorname{ran}(\theta)$ as $\bigcup_{X \in \operatorname{dom}(\theta)} \operatorname{var}(\theta(X))$. As usual, $\theta=\left\{X_{1} \mapsto t_{1}, \ldots, X_{n} \mapsto t_{n}\right\}$ stands for the substitution with domain $\left\{X_{1}, \ldots, X_{n}\right\}$ which satisfies $\theta\left(X_{i}\right)=t_{i}$ for all $1 \leq i \leq n$. By convention, we write $e \theta$ instead of $\theta(e)$, and $\theta \sigma$ for the composition of θ and σ, such that $e(\theta \sigma)=(e \theta) \sigma$ for any e. For any subset $\mathcal{X} \subseteq \operatorname{dom}(\theta)$ we define the restriction $\theta \upharpoonright_{\mathcal{X}}$ as the substitution θ^{\prime} such that $\operatorname{dom}\left(\theta^{\prime}\right)=\mathcal{X}$ and $\theta^{\prime}(X)=\theta(X)$ for all $X \in A$. We also define the disjoint union $\theta_{1} \cup \theta_{2}$ of two given substitutions with
disjoint domains, as the substitution θ such that $\operatorname{dom}(\theta)=\operatorname{dom}\left(\theta_{1}\right) \cup \operatorname{dom}\left(\theta_{2}\right)$, $\theta(X)=\theta_{1}(X)$ for all $X \in \operatorname{dom}\left(\theta_{1}\right)$, and $\theta(Y)=\theta_{2}(Y)$ for all $Y \in \operatorname{dom}\left(\theta_{2}\right)$.
The identity mapping $i d$ from Var onto itself is called the identity substitution, and any substitution ρ which behaves as a bijective mapping from Var onto itself is called a renaming. Two expressions e and e^{\prime} are called variants iff there is some renaming ρ such that $e \rho=e^{\prime}$. The subsumption ordering over Exp is defined by the condition $e \leq e^{\prime}$ iff $e^{\prime}=e \theta$ for some $\theta \in$ Subst. A similar ordering can be defined over $E x p_{\perp}$, and extended to work over Subst $_{\perp}$ by defining $\theta \leq \theta^{\prime}$ iff $\theta^{\prime}=\theta \sigma$ for some $\sigma \in$ Subst $_{\perp}$. For any set of data variables \mathcal{X}, we use the notations $\theta \leq \theta^{\prime}[\mathcal{X}]$ (resp. $\theta \leq \theta^{\prime}[\backslash \mathcal{X}]$) to indicate that $X \theta^{\prime}=X \theta \sigma$ holds for some $\sigma \in{S u b s t_{\perp}}$ and all $X \in \mathcal{X}$ (resp. all $X \notin \mathcal{X}$). Another useful notion is the approximation ordering over Subst $_{\perp}$, defined by the condition $\theta \sqsubseteq \theta^{\prime}$ iff $\theta(X) \sqsubseteq \theta^{\prime}(X)$, for all $X \in V a r$.
Up to this point we have considered data substitutions. Type substitutions can be defined similarly, as mappings $\theta_{t}:$ TVar \rightarrow Type with a unique extension $\hat{\theta}_{t}:$ Type \rightarrow Type, noted also as θ_{t}. The set of all type substitutions is noted as TSubst. Most of the concepts and notations presented above for data substitutions (such as domain, range, composition, renaming, etc.) make sense also for type substitutions, and we will freely use them when needed.

2.1.4 Well-typed Expressions

Inspired by Milner's type system [15,4] we now introduce the notion of welltyped expression. We define a type environment as any set T of type assumptions $X:: \tau$ for data variables, such that T does not include two different assumptions for the same variable. The domain $\operatorname{dom}(T)$ and the $\operatorname{range} \operatorname{ran}(T)$ of a type environment are the set of all data variables resp. type variables that occur in T. For any variable $X \in \operatorname{dom}(T)$, the unique type τ such that $(X:: \tau) \in T$ is noted as $T(X)$. The notation $(h:: \tau) \in_{\text {var }} \Sigma$ is used to indicate that Σ includes the type declaration $h:: \tau$ up to a renaming of type variables.

Type judgements $(\Sigma, T) \vdash_{W T} e:: \tau$ are derived by means of the following type inference rules:

$$
\begin{array}{ll}
\text { VR } & (\Sigma, T) \vdash_{W T} X:: \tau, \text { if } T(X)=\tau \\
\text { ID } & (\Sigma, T) \vdash_{W T} h:: \tau \sigma_{t}, \\
& \text { if }(h:: \tau) \in_{\text {var }} \Sigma_{\perp}, \sigma_{t} \in T S u b s t
\end{array}
$$

AP $(\Sigma, T) \vdash_{W T}\left(e e_{1}\right):: \tau$, if $(\Sigma, T) \vdash_{W T} e::\left(\tau_{1} \rightarrow \tau\right),(\Sigma, T) \vdash_{W T} e_{1}:: \tau_{1}$, for some $\tau_{1} \in$ Type
TP $(\Sigma, T) \vdash_{W T}\left(e_{1}, \ldots, e_{n}\right)::\left(\tau_{1}, \ldots, \tau_{n}\right)$,

$$
\text { if }(\Sigma, T) \vdash_{W T} e_{1}:: \tau_{1}, \ldots,(\Sigma, T) \vdash_{W T} e_{n}:: \tau_{n}
$$

Note that the previous type inference rules can deal with polimorphic types,
because the type declarations included in the signature Σ are interpreted as type schemes, as seen in the inference rule ID.

We will abbreviate a sequence $(\Sigma, T) \vdash_{W T} e_{1}:: \tau_{1}, \ldots,(\Sigma, T) \vdash_{W T} e_{n}:: \tau_{n}$ as $(\Sigma, T) \vdash_{W T} \bar{e}_{n}:: \bar{\tau}_{n}$, while $(\Sigma, T) \vdash_{W T} a:: \tau,(\Sigma, T) \vdash_{W T} b:: \tau$ will be abbreviated as $\quad(\Sigma, T) \vdash_{W T} a:: \tau:: b$.

An expression $e \in E x p_{\perp}$ is called well-typed iff there exist some type environment T and some type τ, such that the type judgement $T \vdash_{W T} e:: \tau$ can be derived. Expressions that admit more than one type are called polymorphic. A well-typed expression always admits a so-called principal type (PT) that is more general than any other. A pattern whose PT determines the PTs of its subpatterns is called transparent. See [9] for more details.

2.2 Programs and Goals

2.2.1 Well-typed Programs

A well-typed program P is a set of well-typed defining rules for the function symbols in its signature. Defining rules for $f \in F S^{n}$ with principal type declaration $f:: \bar{\tau}_{n} \rightarrow \tau$ have the form

$$
(R) \underbrace{f t_{1} \ldots t_{n}}_{\text {left-hand side }} \rightarrow \underbrace{r}_{\text {right-hand side }} \Leftarrow \underbrace{C}_{\text {condition }}
$$

and must satisfy the following requirements:
(i) $t_{1} \ldots t_{n}$ is a linear sequence of transparent patterns and r is an expression.
(ii) The condition C is a sequence of atomic conditions C_{1}, \ldots, C_{k}, where each C_{i} can be either a joinability statement of the form $e==e^{\prime}$, with $e, e^{\prime} \in E x p$, or an approximation statement of the form $d \rightarrow s$, with $d \in E x p$ and $s \in$ Pat.
(iii) Moreover, the condition C must be admissible w.r.t. the set of variables $\mathcal{X}={ }_{\text {def }} \operatorname{var}\left(f \bar{t}_{n}\right)$. By definition, this means that the set of all the approximation statements occurring in C must admit some sequential arrangement, say $d_{1} \rightarrow s_{1}, \cdots, d_{m} \rightarrow s_{m}(m \geq 0)$, such that the three properties below hold:
(a) For all $1 \leq i \leq m: \operatorname{var}\left(s_{i}\right) \cap \mathcal{X}=\emptyset$
(b) For all $1 \leq i \leq m, s_{i}$ is linear and for all $1 \leq j \leq m$ with $i \neq j$ $\operatorname{var}\left(s_{i}\right) \cap \operatorname{var}\left(s_{j}\right)=\emptyset$.
(c) For all $1 \leq i \leq m, 1 \leq j \leq i: \operatorname{var}\left(s_{i}\right) \cap \operatorname{var}\left(d_{j}\right)=\emptyset$.
(iv) There is some type environment T with domain $\operatorname{var}(R)$, which well-types the definining rule in the following sense:
(a) For all $1 \leq i \leq n:(\Sigma, T) \vdash_{W T} t_{i}:: \tau_{i}$.
(b) $(\Sigma, T) \vdash_{W T} r:: \tau$.
(c) For each $\left(e==e^{\prime}\right) \in C$ there is some $\mu \in$ Type such that $(\Sigma, T) \vdash_{W T} e:: \mu:: e^{\prime}$.
(d) For each $(d \rightarrow s) \in C$ there is some $\mu \in$ Type
such that $(\Sigma, T) \vdash_{W T} d:: \mu:: s$.
In the programming language $\mathcal{T O Y}$ [14] program rules are written in a somewhat different way, namely:

$$
\begin{equation*}
\underbrace{f t_{1} \ldots t_{n}}_{\text {left-hand side }} \rightarrow \underbrace{r}_{\text {right-hand side }} \Leftarrow \underbrace{J C}_{\text {joinability conditions }} \text { where } \underbrace{L D}_{\text {local definitions }} \tag{R}
\end{equation*}
$$

In this syntax, the condition C of a program rule is split in two parts: one part $J C$ consisting of joinability statements $e==e^{\prime}$, and another part $L D$ consisting of approximation statements $d \rightarrow s$, which are understood as local definitions for the variables occurring in the pattern s. This motivates requirement (iii) above. In fact:

- Items (iii) (a), (iii) (b) require the locally defined variables to be different from each other and away from the variables occurring in the rule's left-hand side, that act as formal parameters.
- Item (iii) (c) ensures that variables defined in local definition number i can be used in local definition number j only if $j>i$. In particular, this means that the local definitions cannot be recursive.
Informally, the intended meaning of a program rule like (R) above is that a call to function f can be reduced to r whenever the actual parameters match the patterns t_{i}, and both the joinability conditions and local definitions are satisfied. A condition $e==e^{\prime}$ is satisfied by evaluating e and e^{\prime} to some common total pattern. A local definition $d \rightarrow s$ is satisfied by evaluating d to some possibly partial pattern which matches s. A precise formulation of program semantics will be presented in Section 2.3.

2.2.2 A Simple Program

Below we show a simple example program, written in the concrete syntax of the $\mathcal{T O Y}$ language. In this syntax, local definitions $d \rightarrow s$ are written as $s \leftarrow d$, and they must appear in a textual order which shows fulfilment of the admissibility requirements explained in Section 2.2.1. $\mathcal{T O Y}$ also allows to use infix operators such as : to build expressions such as ($\mathrm{X}: \mathrm{Xs}$), which is understood as ((:) X Xs). The signature of the program can be easily inferred from the type declarations included in its text. In particular, the data declarations give complete information about the type constructors and the principal types of the data constructors.

```
% data [A] = [] | A : [A]
head :: [A] }->\textrm{A}\quad\mathrm{ tail :: [A] }->[A
head (X:Xs) ->X tail (X:Xs) ->Xs
```

```
map \(::(A \rightarrow B) \rightarrow[A] \rightarrow[B] \quad\) twice \(::(A \rightarrow A) \rightarrow A \rightarrow A\)
\(\operatorname{map} F[] \quad \rightarrow[] \quad\) twice \(F X \rightarrow F(F X)\)
\(\operatorname{map} F(X: X s) \rightarrow F X:\) map \(F X s\)
drop4 \(::[A] \rightarrow[A] \quad\) from \(::\) nat \(\rightarrow\) [nat \(]\)
drop4 \(\quad \rightarrow\) twice twice tail from \(\mathrm{N} \quad \rightarrow \mathrm{N}:\) from N
data nat \(=z \mid\) suc nat
plus :: nat \(\rightarrow\) nat \(\rightarrow\) nat
plus z \(Y \quad \rightarrow Y\)
plus (suc \(X\) ) \(Y \quad \rightarrow\) suc (plus \(X Y\) )
take :: nat \(\rightarrow[\mathrm{A}] \rightarrow[\mathrm{A}]\)
take \(\mathrm{z} \mathrm{Xs} \quad \rightarrow[]\)
take (suc N) [] \(\rightarrow[] \quad \mathrm{X} / / \mathrm{Y} \rightarrow \mathrm{Y}\)
take (suc \(N\) ) (X:Xs) \(\rightarrow \mathrm{X}:\) take N Xs
data person \(=\) john \(\mid\) mary \(\mid\) peter \(\mid\) paul \(\mid\) sally \(\mid\) molly \(\mid\) rose \(\mid\) tom \(\mid\)
    bob | lisa | alan | dolly \| jim | alice
parents :: person \(\rightarrow\) (person, person)
parents peter \(\rightarrow\) (john,mary) parents alan \(\rightarrow\) (paul,rose)
parents paul \(\rightarrow\) (john,mary) parents dolly \(\rightarrow\) (paul,rose)
parents sally \(\rightarrow\) (john,mary) parents jim \(\rightarrow\) (tom,sally)
parents bob \(\rightarrow\) (peter, molly) parents alice \(\rightarrow\) (tom,sally)
parents lisa \(\quad \rightarrow\) (peter,molly)
ancestor \(::\) person \(\rightarrow\) person
ancestor \(\mathrm{X} \rightarrow \quad \mathrm{Y} / / \mathrm{Z} / /\) ancestor \(\mathrm{Y} / /\) ancestor Z
        where \((\mathrm{Y}, \mathrm{Z}) \leftarrow\) parents X
\% data bool \(=\) true \(\mid\) false
related \(::\) person \(\rightarrow\) person \(\rightarrow\) bool
related \(\mathrm{X} Y \rightarrow\) true \(<=\) ancestor \(\mathrm{X}==\) ancestor Y
```

The data declarations for the types of lists and boolean values are included merely as comments, since these types are predefined in $\mathcal{T} \mathcal{O} \mathcal{Y}$. Note that the list constructors are noted as [] and : (an infix operator), as in Haskell [24]. The intended meaning of the functions should be clear from their names and definitions. The arity of each function is always the same as the number of formal parameters in its rules. In particular, drop4 (a function which eliminates the first four elements of a given list) has arity 0 , in spite of its type. The last two functions illustrate the use of joinability conditions and local definitions. Moreover, the functions ancestor and (//) are non-deterministic, since a call to them with fixed parameters can return more than one result. For instance, ancestor alan can return any of the results paul, rose, john or mary.

Some of the program rules in this example are incorrect w.r.t. the intended meaning of the corresponding functions. More precisely, the second rule for times and the single rule for from are wrong; their correct versions should be:

```
times (suc X) Y 餏us(times X Y) Y from N }->\textrm{N}:\mathrm{ from (suc N)
```

In the next section we will give a formal definition of "intended meaning", which is needed to prove mathematical results about the correctness of declarative debugging.

2.2.3 Well-typed Goals

A well-typed goal G has the same form as a well-typed condition. In particular, it must satisfy the admissibility requirements explained in Section 2.2.1, but now w.r.t. the empty set of variables. A FLP system is expected to solve goals, returning substitutions θ as computed answers. For the simple program from Section 2.2.1, some examples of goals and answers which can be computed by the $\mathcal{T O Y}$ system are:
(i) The goal related alan $X==$ true has the computed answer $\{X \mapsto$ alice $\}$ (among others).
(ii) The goal take (suc (suc $z)$) (from X) $==X$ s has a single computed answer, namely $\{\mathrm{Xs} \mapsto \mathrm{X}: \mathrm{X}:[]\}$, which is wrong w.r.t. the intended meaning of the program.
(iii) The goal head (tail (map (times N$)($ from X$)))==\mathrm{Y}$ asks for the second element of the infinite list that contains the product of N by the consecutive natural numbers starting at X. The first two solutions computed by $\mathcal{T O Y}$ are $\{\mathrm{N} \mapsto \mathrm{z}, \mathrm{Y} \mapsto \mathrm{z}\}$ (which is correct) and $\{\mathrm{N} \mapsto$ suc $\mathrm{z}, \mathrm{Y} \mapsto \mathrm{z}\}$ (which is wrong). This is because the buggy function times causes the expression (times (suc z)) to return always the result z. The valid solution $\{\mathrm{N} \mapsto$ suc $\mathrm{z}, \mathrm{Y} \mapsto$ suc X$\}$ expected by the user is in fact a missing answer. Diagnosing missing answers is beyond the scope of this paper.

2.3 Program Semantics

2.3.1 The Semantic Calculus SC

In [9], a rewriting calculus called $G O R C$ was used to deduce from a given program P those approximation and joinability statements which should be considered as valid according to P 's semantics. Informally, an approximation statement $e \rightarrow t$ means that $t \in P a t_{\perp}$ represents a partially defined value which approximates the value of $e \in E x p_{\perp}$; while a joinability statement $e==e^{\prime}$ means that $e \rightarrow t, e^{\prime} \rightarrow t$ holds for some total $t \in$ Pat.

In this paper we will use the Semantic Calculus $S C$, a variant of $G O R C$ which was first proposed in [2] in order to define a logically correct framework for the declarative debugging of wrongs answers in lazy FLP languages. Formally, $S C$ consists of the following inference rules:

$$
\begin{array}{ll}
\text { BT } & e \rightarrow \perp \\
\text { RR } & X \rightarrow X \text { with } X \in \operatorname{Var}
\end{array}
$$

$$
\mathbf{D C} \frac{e_{1} \rightarrow t_{1} \ldots e_{m} \rightarrow t_{m}}{h \bar{e}_{m} \rightarrow h \bar{t}_{m}} h \bar{t}_{m} \in P a t_{\perp}
$$

$$
\begin{aligned}
& \mathbf{J N} \underset{e==e^{\prime}}{e \rightarrow t \quad e^{\prime} \rightarrow t} t \in \text { Pat (total pattern) }
\end{aligned}
$$

In all the $S C$ rules, $e, e_{i} \in E x p_{\perp}$ are partial expressions, $t_{i}, t, s \in P a t_{\perp}$ are partial patterns and $h \in D C \cup F S$. The notation $[P]_{\perp}$ in rule $A R+F A$ stands for the set $\left\{(l \rightarrow r \Leftarrow C) \theta \mid(l \rightarrow r \Leftarrow C) \in P, \theta \in S^{\circ} \Leftarrow b s t_{\perp}\right\}$ of partial instances of the rules from P. The labels of the different inference rules have the following intended meanings: $B T$ stands for Bottom, $R R$ for restricted reflexivity, $D C$ for decomposition, $J N$ for joinability and $A R+F A$ for argument reduction + function application.
Notice that $A R+F A$ is the only $S C$ rule which depends on the given program. It must be understood as the consecutive application of two inference steps, whose separate specification is displayed below:

FA $\quad \frac{C \quad r \rightarrow s}{f \bar{t}_{n} \rightarrow s} \quad\left(f \bar{t}_{n} \rightarrow r \Leftarrow C\right) \in[P]_{\perp}$
The rule $A R+F A$ formalizes the steps to be performed for computing a partial pattern t as approximated value for the function application $f \bar{e}_{n} \bar{a}_{k}$, namely:
(i) Compute suitable partial patterns t_{i} as approximated values for the argument expressions e_{i}.
(ii) Apply a program rule instance $\left(f \bar{t}_{n} \rightarrow r \Leftarrow C\right) \in[P]_{\perp}$, verify the condition C, and compute a suitable partial pattern s as approximated value for the right-hand side r.
(iii) Compute t as approximated value for $s \bar{a}_{k}$.

Working with partial patterns here allows to specify non-strict semantics with the syntactic simplicity of strict semantics. In the case $k>0, f$ must be a higher-order function which returns a functional value, represented by the pattern s. In the case $k=0$, the rule $A R+F A$ can be simplified by taking $f \bar{t}_{n} \rightarrow t$ as the conclusion of the $F A$ step, and omitting the premise $s \bar{a}_{k} \rightarrow t$. We will implicitly assume this simplification all along the paper.

Note that $S C$ cannot apply the two inference rules $A R$ and $F A$ independently; they must be always used within a combined $A R+F A$ step. Nevertheless, to think of the $F A$ steps within a given $S C$ proof is helpful, because only such steps depend on program rules. Moreover, the conclusions of $F A$ steps are particularly simple approximation statements of the form $f \bar{t}_{n} \rightarrow s$ (with $t_{i}, s \in P a t_{\perp}$), which will be called basic facts in the rest of the paper. Both basic facts and local definitions are approximation statements, but they are used for different purposes. A basic fact $f \bar{t}_{n} \rightarrow s$ asserts that the (possibly non-linear) partial pattern s approximates the result of $f \bar{t}_{n}$, a call function call with the exact number of arguments expected by f 's arity, and with arguments $t_{i} \in P a t_{\perp}$, which represent the partial approximations of f 's actual parameters needed to compute s as result.
The other inference rules in $S C$ are easier to understand. In the sequel we use the notation $P \vdash_{S C} \varphi$ is used to indicate that the statement φ can be deduced from the program P using the $S C$ inference rules. For instance, taking as P the simple program from Section 2.2.2, the following $S C$ derivations are possible:
(i) $P \vdash_{S C}$ from $\mathrm{X} \rightarrow \mathrm{X}: \perp$.
(ii) $P \vdash_{S C}$ from $\mathrm{X} \rightarrow \mathrm{X}: \mathrm{X}: \perp$.
(iii) $P \vdash_{S C}$ parents alice \rightarrow (tom, sally).
(iv) $P \vdash_{S C}$ ancestor alan \rightarrow john.
(v) $P \vdash_{S C}$ ancestor alan \rightarrow mary.
(vi) $P \vdash_{S C}$ ancestor alice \rightarrow john.
(vii) $P \vdash_{S C}$ ancestor alice \rightarrow mary.
(viii) $P \vdash_{S C}$ ancestor alan $==$ ancestor alice.

These examples show that the semantics of approximation statements is consistent with their use as local definitions within programs, but different from the meaning of equality. For instance, from $X \rightarrow X: \perp$ only means that the partial value $X: \perp$ approximates the value of (from X), not that the value of (from X) is equal to $X: \perp$. There is a formal relationship between approximation statements and the approximation ordering over $P a t_{\perp}$ defined in Section 2.1.2. This and other basic properties of $S C$ are stated in the following result, which can be proved by straightforward induction on the structure of $S C$ proofs ${ }^{4}$.

Proposition 2.1 For any given program P :
(i) For all $t, s \in P a t_{\perp}: P \vdash_{S C} t \rightarrow s$ iff $t \sqsupseteq s$.

[^1]

Figure 1: Proof Tree in the semantic calculus $S C$
(ii) For all $e \in E x p_{\perp}, t, s \in P a t_{\perp}$: if $P \vdash_{S C} e \rightarrow t$ and $t \sqsupseteq s$, then also $P \vdash_{S C} e \rightarrow s$.
(iii) For all $e \in E x p_{\perp}, t \in P a t_{\perp}$ and $\theta, \theta^{\prime} \in S u b s t_{\perp}$ such that $P \vdash_{S C} e \theta \rightarrow t$ and $\theta \sqsubseteq \theta^{\prime}$, one also has $P \vdash_{S C} e \theta^{\prime} \rightarrow t$ with a $S C$ proof of the same size and structure.
(iv) For all $e \in \operatorname{Exp}_{\perp}$, $s \in P a t_{\perp}$ such that $P \vdash_{S C} e \rightarrow s$, one has also $P \vdash_{S C} e \theta \rightarrow s \theta$ for any total substitution $\theta \in$ Subst.

2.3.2 Proof Trees Witnessing Computed Answers

We have already introduced the notion of computed answer in Section 2.2.3, assuming the existence of some goal solving system. From now on and for the rest of the paper, we will also assume that the goal solving system is sound w.r.t. the semantic calculus $S C$. More precisely, we assume that $P \vdash_{S C} G \theta$ holds for every substitution θ which is computed as an answer for G by the goal solving system, using program P. Note that θ must be thought as given in advance before $S C$ proves $G \theta$. By convention, the notation $P \vdash_{S C} G \theta$ means that $P \vdash_{S C} \varphi \theta$ holds for each single atomic statement φ in G.
Given an atomic goal G, a particular $S C$ deduction proving $P \vdash_{S C} G \theta$ can be always represented using a proof tree (briefly PT) with atomic statements attached to its nodes, such that $G \theta$ is attached to the root node and the statement at each node can be inferred form the statements attached to its children by means of some $S C$ inference rule. In the case that G is not atomic, each particular $S C$ deduction proving $P \vdash_{S C} G \theta$ can be represented by a family of proof trees for the different deductions $P \vdash_{S C} \varphi \theta$ corresponding to the single atomic statements in G. By slight abuse of the language, we will speak of a proof tree also in this case.

Figure 2: APT corresponding to the PT of Figure 1
As we have mentioned already, $\theta=\{X \mathrm{~s} \mapsto \mathrm{X}: \mathrm{X}:[]\}$ is a computed answer for the goal $G=$ take (suc (suc z)) (from X$)==\mathrm{X}$ s w.r.t. the simple program P form Section 2.2.2. Any proof of $P \vdash_{S C} G \theta$ must include a deduction of $P \vdash_{S C}$ take (suc (suc z)) (from X) $\rightarrow \mathrm{X}: \mathrm{X}:[]$, which is witnessed by the PT displayed in Fig. 1. Note that the basic facts occurring as conclusions of $F A$ steps are highlighted by displaying them within boxes.

2.3.3 Abbreviated Proof Trees

As we will explain in the next section, our aim is to use proof trees as computation trees for declarative debugging. To this purpose, the only relevant nodes are those which correspond to the conclusion of $F A$ steps. This is because all the other inference rules in $S C$, being program independent, cannot give rise to incorrect steps. For this reason, we associate to any given proof tree an abbreviated proof tree (briefly APT), obtained by removing all those nodes of the PT , except the root, which are not the conclusion of a $F A$ inference. More precisely, the APT corresponding to a given PT is constructed as follows:

- The root of the APT is the root of the given PT.
- For any node already placed in the APT, its children are the closest descendants of the corresponding node in the PT which represent the conclusion of a non-trivial $F A$ step.
- A $F A$ step with conclusion $f \bar{t}_{n} \rightarrow s$ is considered non-trivial iff $s \neq \perp$.

Note that trivial $F A$ steps can be also ignored, because their conclusions are always trivially valid facts of the form $f \bar{t}_{n} \rightarrow \perp$. In every APT, each node is implicitly associated to the program rule instance used by the corresponding $F A$ step, whose conclusion is precisely the basic fact $f \bar{t}_{n} \rightarrow s$ at the node. Note that t_{1}, \ldots, t_{n}, s are partial patterns which cannot contain any reducible function calls. As a concrete example, Fig. 2 shows the APT obtained from the PT in Fig. 1.

2.3.4 Intended Models

Intended models of logic programs, as used in [6,13], can be represented as sets of atomic formulas belonging to the program's Herbrand base. The open Herbrand universe (i.e. the set of terms with variables) gives rise to a more
informative semantics [5]. In our FLP setting, a natural analogous to the open Herbrand universe is the set $P a t_{\perp}$ of all the partial patterns, equipped with the approximation ordering \sqsubseteq. Similarly, a natural analogous to the open Herbrand base is the collection of all the basic facts $f \bar{t}_{n} \rightarrow s$. Therefore, we can define a Herbrand interpretation as a set \mathcal{I} of basic facts fulfilling the following three requirements for all $f \in F S^{n}$ and arbitrary partial patterns t, \bar{t}_{n} :
(i) $\left(f \bar{t}_{n} \rightarrow \perp\right) \in \mathcal{I}$.
(ii) If $\left(f \bar{t}_{n} \rightarrow s\right) \in \mathcal{I}, t_{i} \sqsubseteq t_{i}^{\prime}, s \sqsupseteq s^{\prime}$ then also $\left(f \bar{t}_{n}^{\prime} \rightarrow s^{\prime}\right) \in \mathcal{I}$.
(iii) if $\left(f \bar{t}_{n} \rightarrow s\right) \in \mathcal{I}$, and θ is total substitution, then $\left(f \bar{t}_{n} \rightarrow s\right) \theta \in \mathcal{I}$.

This definition of Herbrand interpretation is simpler than the one in [9], where a more general notion of interpretation (under the name algebra) is presented. The trade-off for this simpler presentation is to exclude non-Herbrand interpretations from our consideration. In our debugging scheme we will assume that the intended model of a program is a Herbrand interpretation \mathcal{I}. Herbrand interpretations can be ordered by set inclusion.
A logically correct program P should conform to its intended interpretation \mathcal{I}. In order to formalize this idea, we need some definitions. First, we say that a given approximation or joinability statement φ is valid in the Herbrand interpretation \mathcal{I} iff φ can be proved in the calculus $S C_{\mathcal{I}}$ consisting of the $S C$ rules $B T, R R, D C$ and $J N$ together with the inference rule $F A_{\mathcal{I}}$ below:

$$
\begin{array}{cl}
\mathbf{F A}_{\mathcal{I}} \frac{e_{1} \rightarrow t_{1} \ldots e_{n} \rightarrow t_{n} s \bar{a}_{k} \rightarrow t}{f \bar{e}_{n} \bar{a}_{k} \rightarrow t} & t \text { pattern, } t \neq \perp, s \text { pattern } \\
& \left(f \bar{t}_{n} \rightarrow s\right) \in \mathcal{I}
\end{array}
$$

For instance, assuming the natural intended model \mathcal{I} for the simple program from Section 2.2.2, the following statements are valid in \mathcal{I} :
(i) from $X \rightarrow X$:suc $X: \perp$
(ii) take (suc (suc z)) (from X) $\rightarrow X$:suc X :[]
(iii) ancestor alan $==$ ancestor alice

The first of these statements even belongs to \mathcal{I}. In general, for every basic fact $f \bar{t}_{n} \rightarrow s$, it can be proved that $f \bar{t}_{n} \rightarrow s$ is valid in \mathcal{I} iff $\left(f \bar{t}_{n} \rightarrow s\right) \in \mathcal{I}$.
Next we define the denotation of expressions and the notion of model of a given program:

- The denotation of e is the set $\llbracket e \rrbracket^{\mathcal{I}}=\left\{s \in P a t_{\perp} \mid e \rightarrow s\right.$ valid in $\left.\mathcal{I}\right\}$.
- \mathcal{I} is a model of $P(\mathcal{I} \models P)$ iff every program rule in P is valid in \mathcal{I}.
- A program rule $l \rightarrow r \Leftarrow C$ is valid in $\mathcal{I}(\mathcal{I} \models l \rightarrow r \Leftarrow C)$ iff for any substitution $\theta \in$ Subst $_{\perp}, \mathcal{I}$ satisfies the rule instance $l \theta \rightarrow r \theta \Leftarrow C \theta$.
- \mathcal{I} satisfies a rule instance $l^{\prime} \rightarrow r^{\prime} \Leftarrow C^{\prime}$ iff either \mathcal{I} does not satisfy C^{\prime} or else $\llbracket l^{\prime} \rrbracket^{\mathcal{I}} \supseteq \llbracket r^{\prime} \rrbracket^{\mathcal{I}}$.
- \mathcal{I} satisfies an instantiated condition $C^{\prime}=\varphi_{1}, \ldots \varphi_{k}$ iff for $i=1 \ldots k, \mathcal{I}$ satisfies φ_{i}.
- \mathcal{I} satisfies $d^{\prime} \rightarrow s^{\prime} \in C^{\prime}$, iff $\llbracket d^{\prime} \rrbracket^{\mathcal{I}} \supseteq \llbracket s^{\prime} \rrbracket^{\mathcal{I}}$. It can be shown that $\llbracket d^{\prime} \rrbracket^{\mathcal{I}} \supseteq \llbracket s^{\prime} \rrbracket^{\mathcal{I}}$ iff $s^{\prime} \in \llbracket d^{\prime} \rrbracket^{\mathcal{I}}$.
- \mathcal{I} satisfies $l^{\prime}==r^{\prime} \in C^{\prime}$, iff $\llbracket l^{\prime} \rrbracket^{\mathcal{I}} \cap \llbracket r^{\prime} \rrbracket^{\mathcal{I}} \cap$ Pat $\neq \emptyset$.

The fundamental relationship between programs and models is stated in the following result, which is proved in [9] for a notion of model more general than Herbrand models. A proof for the present formulation can be found in Appendix A.

Theorem 2.2 Let P be a program and φ any approximation or joinability statement. Then:
(a) If $P \vdash_{S C} \varphi$ then φ is valid in any Herbrand model of P.
(b) $\mathcal{M}_{P}=\left\{f \bar{t}_{n} \rightarrow s \mid P \vdash_{S C} f \bar{t}_{n} \rightarrow s\right\}$ is the least Herbrand model of P w.r.t. the inclusion ordering.
(c) If φ is valid in \mathcal{M}_{P} then $P \vdash_{S C} \varphi$.

Putting together the previous theorem and the assumed soundness of the goal solving system w.r.t. $S C$, we immediately obtain:

Proposition 2.3 Assume a program P and a computed answer θ for a goal G, such that $G \theta$ is not valid in the Herbrand interpretation \mathcal{I}. Then, there must be some program rule in P which is not valid in \mathcal{I}.

This proposition predicts the existence of at least one wrong program rule whenever a wrong computed answer is observed. Here, wrong must be understood in the precise sense of being not valid in the intended model. In the case of our simple program $P, \theta=\{\mathrm{X} s \mapsto \mathrm{X}: \mathrm{X}:[]\}$ is a wrong computed answer for the goal $G=$ take (suc (suc z)) (from X) $==\mathrm{Xs}$, because $G \theta$ is not valid in the intended model. By Proposition 2.3, some wrong rule in P must be responsible for the wrong answer. Indeed, the program rule defining the function from is wrong.
Whenever a program rule $l \rightarrow r \Leftarrow C$ is not valid in the intended model \mathcal{I}, there must be some substitution $\theta \in S u b s t_{\perp}$ such that the rule instance $l \theta \rightarrow r \theta \Leftarrow C \theta$ is not satisfied by \mathcal{I}, which means that
(i) $\varphi \theta$ is valid in \mathcal{I} for all $\varphi \in C$.
(ii) $r \theta \rightarrow s$ is valid in \mathcal{I} for some $s \in P a t_{\perp}$ such that $(l \theta \rightarrow s) \notin \mathcal{I}$.

In our example, the incorrect instance of the rule defining from is the rule itself. Indeed, $\mathrm{N}:$ from $\mathrm{N} \rightarrow \mathrm{N}: \mathrm{N}: \perp$ is valid in \mathcal{I}, but (from $\mathrm{N} \rightarrow \mathrm{N}: \mathrm{N}: \perp) \notin \mathcal{I}$. This corresponds to item (ii) above, with $\mathrm{N}: \mathrm{N}: \perp$ acting as s.

For the purposes of practical debugging, Proposition 2.3 must be refined to yield an effective method which can be used to find an incorrect instance of a program rule, starting from the observation of a wrong computed answer.

In the next section, we show that this can be achieved by using a declarative debugging scheme with APTs acting as computation trees. Effective methods to implement this approach are investigated in the rest of the paper.

2.4 Declarative Debugging

2.4.1 A Generic Declarative Debugging Scheme

The debugging scheme proposed in [19] assumes that any terminated computation can be represented as a finite tree, called computation tree (briefly $\mathrm{CT})$. The root of this tree corresponds to the result of the main computation, and each node corresponds to the result of some intermediate subcomputation. Moreover, it is assumed that the result at each node is determined by the results of the children nodes. Therefore, every node can be seen as the outcome of a single computation step. The debugger works by traversing a given CT (so called CT navigation), looking for erroneous nodes. Different kinds of programming paradigms and/or errors need different types of trees, as well as different notions of erroneous.

A sound debugger should only report bugs that really correspond to wrong computation steps. This consideration leads to ignore erroneous nodes which have some erroneous children, since they do not necessarily correspond to wrong computation steps. Following the terminology of [19], an erroneous node with no erroneous children is called a buggy node. In order to avoid unsoundness, the debugging scheme looks only for buggy nodes, asking questions to an oracle (generally the user) in order to determine which nodes are erroneous. The following easy result is proved in [19]:

Proposition 2.4 A finite computation tree has an erroneous node iff it has a buggy node. In particular, a finite computation tree whose root node is erroneous has some buggy node.

This provides a 'weak' notion of completeness for the debugging scheme that is satisfactory in practice. Usually, actual debuggers look only for a topmost buggy node in a computation tree whose root is erroneous. Multiple bugs can be found by reiterated application of the debugger.

2.4.2 Debugging with APTs is Logically Correct

Our debugging system is based on the declarative debugging scheme just recalled. We assume well-typed FLP programs and goals, as described in Section 2.2. We also suppose an intended model for each program, represented as a set of basic facts, as explained in Section 2.3.4. Computations are performed by a goal solving system which must be sound w.r.t. the semantic calculus $S C$ from Section 2.3.1. Whenever a computation obtains an answer substitution θ for a goal G using program P, we assume that an APT witnessing $P \vdash_{S C} G \theta$ is used as computation tree. An APT node is considered erroneous iff the
statement attached to it (which is always a basic fact, except perhaps for the root) is not valid in the intended model.
The next theorem guarantees the logical correctness of declarative debugging with APTs:

Theorem 2.5 Assume a wrong computed answer θ, computed for the goal G using program P, such that $G \theta$ is not valid in the intended model. Consider any APT witnessing $P \vdash_{S C} G \theta$, which must exist due to soundness of the goal solving system w.r.t. SC. Then, declarative debugging using the APT as computation tree has the following two properties:
(a) Completeness: navigating the APT will find a buggy node.
(b) Soundness: every buggy node in the APT points to an instance of a program rule which is incorrect w.r.t. the intended model.

Proof.

Item (a) follows immediately from Proposition 2.4, provided that the search strategy used to navigate the tree does not miss existing buggy nodes. To prove item (b), assume that the intended model is \mathcal{I}, the APT is apt, and the PT which has been abbreviated to obtain apt is $p t$. Now consider any given buggy node in apt. The corresponding node in pt must contain a basic fact $f \bar{t}_{n} \rightarrow s$ which is not valid in \mathcal{I} and has been inferred as the conclusion of a $F A$ inference step using some instance of a program rule, say $\left(f \bar{t}_{n} \rightarrow r \Leftarrow C\right) \in[P]_{\perp}$. Therefore, the children of $f \bar{t}_{n} \rightarrow s$ in $p t$ correspond to the statement $r \rightarrow s$ and all the statements in C. In apt, the children of $f \bar{t}_{n} \rightarrow s$ are not necessarily these; but since apt has been built as the abbreviated form of $p t$, it happens that $r \rightarrow s$ and C can be inferred from the children of $f \bar{t}_{n} \rightarrow s$ in apt by means of $S C$ inferences which are different from $F A$ and therefore correct in every Herbrand interpretation. Moreover, all the children of $f \bar{t}_{n} \rightarrow s$ in apt are valid in \mathcal{I}, because they are the children of a buggy node. With this we can conclude that C and $r \rightarrow s$ are valid in \mathcal{I}, while $f \bar{t}_{n} \rightarrow s$ is not; which means that the program rule instance $\left(f \bar{t}_{n} \rightarrow r \Leftarrow C\right) \in[P]_{\perp}$ is incorrect in \mathcal{I}.

This theorem provides an effective version of Proposition 2.3 as well as a logical interpretation of computation trees. To the best of our knowledge, this is missing in other related approaches to declarative debugging of lazy FP and FLP programs [21,22,23,27,18,20,25].

As a concrete example, consider again the PT shown in Fig. 1 and the corresponding APT shown in Fig. 2. As we have said before, PT witnesses the computation of the wrong answer $\theta=\{\mathrm{Xs} \mapsto \mathrm{X}: \mathrm{X}:[]\}$ for the goal

$$
G=\text { take }(\text { suc }(\text { suc } z))(\text { from } \mathrm{X})=\mathrm{Xs}
$$

using the simple program from Section 2.2.2 ${ }^{5}$. In Fig. 2, the statements at

[^2]erroneous nodes are displayed in bold letters, and the only buggy node appears surrounded by a double box. In this case, the reasoning of Theorem 2.5 leads to the incorrect program rule instance used by the $F A$ step at the buggy node, which is from $\mathrm{N} \rightarrow \mathrm{N}$:from N .

In a previous work [2] we have presented a method to extract the APT which witnesses a particular computation from a formal representation of the computation in a lazy narrowing calculus. This theoretical result depends on a particular formalization of narrowing, and does not provide a direct way to implement a debugging tool for existing FLP systems. In the rest of this paper we propose more effective methods for the generation and navigation of APTs, which allow to implement a working debugging tool.

3 Problems and Contributions

In this short section we summarize the main contributions of this paper to the two stages of declarative debugging, namely CT generation and CT navigation.

3.1 CT Generation

In the context of lazy FP and FLP, two main ways of constructing CT's have been proposed. The program transformation approach [22,20,25] gives rise to transformed programs whose functions return CTs along with the originally expected results. The abstract machine approach [21,22,23,27] requires lower level modifications of the language implementation. Although the second approach can result in a better performance, we have adopted the first one because we find it more portable and better suited to a formal correctness analysis. With respect to other papers based in the transformational approach, we present two main contributions, described below.

3.1.1 Curried Functions

Roughly, all transformational approaches transform the functions defined in the source program to return pairs (res,ct) consisting of a computed result and a CT. From the viewpoint of types, the transformation of a n-ary function $f \in F S^{n}$ looks as follows:
$f:: \tau_{1} \rightarrow \cdots \rightarrow \tau_{n} \rightarrow \tau \Rightarrow f^{\mathcal{T}}:: \tau_{1}^{\mathcal{T}} \rightarrow \cdots \rightarrow \tau_{n}^{\mathcal{T}} \rightarrow\left(\tau^{\mathcal{T}}\right.$, cTree $)$
where c Tree is a datatype for representing CTs, and $\tau_{i}^{\mathcal{T}}$ resp. $\tau^{\mathcal{T}}$ are suitable transformations of the types τ_{i} resp. τ. This type transformation amounts to the identity in the case of datatypes (i.e., types with no occurrence of the type constructor " \rightarrow "), but it becomes relevant in the case of higher-order (briefly, HO) types, whose translation involves the type cTree. For instance, the types
ment take (suc (sucz)) (from X) $==\mathrm{X}: \mathrm{X}:[]$ at the root; but the PT from Fig. 1 represents the interesting part of the deduction.
of the functions plus, drop4 and map from the simple program in Section 2.2.2, whose respective arities are 2,0 and 2 , are translated as shown below. The type of drop4 has the form ($\tau^{\mathcal{T}}, c$ Tree $)$ because drop4 has been declared as a nullary function, to be defined by parameterless program rules.

$$
\begin{array}{lll}
\text { plus }:: \text { nat } \rightarrow \text { nat } \rightarrow \text { nat } & \Rightarrow & \text { plus }^{\mathcal{T}}:: \text { nat } \rightarrow \text { nat } \rightarrow(\text { nat, cTree }) \\
\text { drop4 }::[\mathrm{A}] \rightarrow[\mathrm{A}] & \Rightarrow & \operatorname{drop}^{\mathcal{T}}::([\mathrm{A}] \rightarrow([\mathrm{A}], \text { cTree }), \mathrm{c} \text { Tree }) \\
\text { map }::(\mathrm{A} \rightarrow \mathrm{~B}) \rightarrow[\mathrm{A}] \rightarrow[\mathrm{B}] & \Rightarrow & \operatorname{map}^{\mathcal{T}}::(\mathrm{A} \rightarrow(\mathrm{~B}, \mathrm{c} \text { Tree })) \rightarrow[\mathrm{A}] \rightarrow([\mathrm{B}], \mathrm{cTree})
\end{array}
$$

As pointed out in [20,25], this approach can lead to type errors when curried functions are used to compute results which are taken as parameters by other functions. For instance, (map drop4) is well-typed, but the naïve translation (map ${ }^{\mathcal{T}} \operatorname{drop} 4^{\mathcal{T}}$) is ill-typed, because the type of drop4 $\mathcal{T}^{\mathcal{T}}$ does not match the type expected by map ${ }^{\mathcal{T}}$ for its first parameter. More generally, the type of the result returned by $f^{\mathcal{T}}$ when applied to m arguments depends on the relation between m and f 's arity n. For example, (map (plus z)) and (map plus) are both well-typed. However, when translating naïvely, (map ${ }^{\mathcal{T}}$ (plus ${ }^{\mathcal{T}} z$)) remains well-typed, while (map ${ }^{\mathcal{T}}$ plus $^{\mathcal{T}}$) becomes ill-typed.
As a possible solution to this problem, the authors of [20] suggest to modify the translation in such a way that a curried function of arity $n>0$ always returns a result of type ($\tau^{\mathcal{T}}$, cTree) when applied to its first parameter. The type translation of the function plus following this idea yields plus ${ }^{\mathcal{T}}::$ nat \rightarrow (nat \rightarrow (nat, cTree), cTree).
However, as noted in [20], such a transformation would cause transformed programs to compute inefficiently, producing CTs with many useless nodes. Therefore, the authors of [20] wrote: "An intermediate transformation which only handles currying when necessary is desirable. Whether this can be done without detailed analysis of the program is under investigation".
Our program transformation solves this problem by translating a curried function f of arity n, into n curried functions $f_{0}^{\mathcal{T}}, \ldots, f_{n-2}^{\mathcal{T}}, f^{\mathcal{T}}$ with respective arities $1,2, \ldots n-1, n$, and suitable types. Function $f_{m}^{\mathcal{T}}(0 \leq m \leq n-2)$ is used to translate occurrences of f applied to m parameters, while $\mathrm{f}^{\mathcal{T}}$ translates occurrences of f applied to $n-1$ parameters. For instance, (map plus) is transformed into (map ${ }^{\mathcal{T}}$ plus $_{0}{ }^{\mathcal{T}}$), using the auxiliary function plus ${ }_{0}^{\mathcal{T}}::$ nat \rightarrow (nat \rightarrow (nat, cTree), cTree). As we will see formally in Section 4, the application of a n-ary function f to n or more parameters must be translated with the help of local definitions, a technique already used in [22,20,25].
We provide a similar solution to deal with partial application of curried data constructors, which can also cause type errors in the naïve approach (think of (twice ${ }^{\mathcal{T}}$ suc), as an example). As far as we know, the difficulties with curried constructors have not been addressed previously. Our approach certainly increases the number of functions in transformed programs, but the extra
functions are used only when needed, and inefficient CTs with useless nodes can be avoided. A detailed specification of the transformation, dealing both with types and with program rules, is presented in Section 4.

3.1.2 Correctness Results

Our program transformation preserves polymorphic well-typing (module the type transformation $\tau \mapsto \tau^{\mathcal{T}}$) as well as the program semantics formalized in Section 2.3. Under some minimal and natural assumptions about the goal solving system, we also prove that translated programs compute APTs which can be used for logically correct declarative debugging, as we have seen in Section 2.4.2, Theorem 2.5.
These correctness results are presented in Section 4. To the best of our knowledge, previous related papers $[22,20,25]$ give no correctness proof for the program transformation. The author of [25], who is aware of the problem, just relies on intuition for the semantic correctness. He mentions the need of a formalized semantics for a rigorous proof. As for type correctness, it is closely related to the treatment of curried functions, which was deficient in previous approaches.

3.2 CT Navigation

In order to be a really practical tool, a declarative debugger should keep the number of questions asked to the oracle as small as possible. Our debugger uses a decidable and semantically correct entailment between basic facts to maintain a consistent and non-redundant store of facts known from previously answered questions. Redundant questions whose answer is entailed by stored facts can be avoided. In Section 5 we define the entailment relation, proving its decidability and discussing its use during CT navigation.

4 Generation of CTs by Program Transformation

In this section we present the program transformation used by our debugger and we prove its correctness. Roughly, a program P is converted into a new program $P^{\mathcal{T}}$, where function calls return the same results P would return, but paired with CTs. Formally, $P^{\mathcal{T}}$ is obtained by transforming the signature Σ of P into a new signature $\Sigma^{\mathcal{T}}$, introducing definitions for certain auxiliary functions, and transforming the function definitions included in P. Let us consider these issues one by one.

4.1 Representing Computation Trees

A transformed program always includes the constructors of the datatype cTree, used to represent CTs and defined as follows:

```
data cTree = void | cNode funld [arg] res rule [cTree]
type arg, res = pVal
type funld, pVal, rule = string
```

A CT of the form (cNode f ts $s \mathrm{rl}$ cts) corresponds to a call to the function f with arguments ts and result s , where rl indicates the function rule used to evaluate the call, and the list cts consists of the children CTs corresponding to all the function calls (in the local definitions, right-hand side and conditions of rl) whose activation was needed in order to obtain s. Due to lazy evaluation, the main computation may demand only partial approximations of the results of intermediate computations. Therefore, ts and s stand for possibly partial values, represented as partial patterns; and ($\mathrm{f} \mathrm{ts} \rightarrow \mathrm{s}$) represents the basic fact whose validity will be asked to the oracle during debugging, as explained in Section 2.4. As for void, it represents an empty CT, returned by calls to functions which are trusted to be correct (in particular, data constructors and the auxiliary functions introduced by the translation). Finally, the definition of arg, res, funld, pVal and rule as synonyms of the type of character strings is just a simple representation; other choices are possible. In fact, our current prototype debugger uses more structured representations instead of strings. In particular, values of type rule in our debugging system represent instances of program rules, so that the wrong program rule instances associated to buggy nodes can be presented to the user.

4.2 Transforming Program Signatures

For every n-ary function $f:: \tau_{1} \rightarrow \ldots \rightarrow \tau_{n} \rightarrow \tau$ occurring in $P, P^{\mathcal{T}}$ must include an $(m+1)$-ary auxiliary function $f_{m}^{\mathcal{T}}$ for each $0 \leq m<n-1$, as well as an n-ary function $f^{\mathcal{T}}$, with principal types:

$$
\begin{aligned}
& f_{m}^{\mathcal{T}}:: \\
& \tau_{1}^{\mathcal{T}} \rightarrow \ldots \rightarrow \tau_{m+1}^{\mathcal{T}} \rightarrow\left(\left(\tau_{m+2} \rightarrow \ldots \rightarrow \tau_{n} \rightarrow \tau\right)^{\mathcal{T}}, \text { cTree }\right) \\
& f^{\mathcal{T}}:: \tau_{1}^{\mathcal{T}} \rightarrow \ldots \rightarrow \tau_{n}^{\mathcal{T}} \rightarrow\left(\tau^{\mathcal{T}}, \text { cTree }\right)
\end{aligned}
$$

Similarly, for each n-ary data constructor $c:: \tau_{1} \rightarrow \ldots \rightarrow \tau_{n} \rightarrow \tau$ occurring in $P, P^{\mathcal{T}}$ must keep c with the same principal type, and include new $(m+1)$-ary auxiliary functions $c_{m}^{\mathcal{T}}(0 \leq m<n)$, with principal types:

$$
c_{m}^{\mathcal{T}}:: \tau_{1}^{\mathcal{T}} \rightarrow \ldots \rightarrow \tau_{m+1}^{\mathcal{T}} \rightarrow\left(\left(\tau_{m+2} \rightarrow \ldots \rightarrow \tau_{n} \rightarrow \tau\right)^{\mathcal{T}}, \text { cTree }\right)
$$

Note that $c_{m}^{\mathcal{T}}$ are not data constructors in the translated signature. Defining rules for them will be presented below. The principal types declared above for the function symbols in the transformed signature depend on a type transformation. Any type τ in P 's signature is transformed into another type $\tau^{\mathcal{T}}$ in $P^{\mathcal{T}}$'s signature, which is recursively defined as follows:

$$
\begin{array}{llr}
\alpha^{\mathcal{T}} & =\alpha & (\alpha \in T \text { Var }) \\
\left(C \bar{\tau}_{n}\right)^{\mathcal{T}} & =C \bar{\tau}_{n}^{\mathcal{T}} & \left(C \in T C^{n}\right) \\
(\mu \rightarrow \nu)^{\mathcal{T}} & =\mu^{\mathcal{T}} \rightarrow\left(\nu^{\mathcal{T}}, \mathrm{cTree}\right) &
\end{array}
$$

Observe that $\tau^{\mathcal{T}}$ equals τ whenever τ is a dataype with no occurrences of the higher-order type constructor " \rightarrow ". Since this is the case for the principal types of arguments and results of data constructors c, the auxiliary functions $c_{m}^{\mathcal{T}}$ can be also declared as

$$
c_{m}^{\mathcal{T}}:: \tau_{1} \rightarrow \ldots \rightarrow \tau_{m+1} \rightarrow\left(\left(\tau_{m+2} \rightarrow \ldots \rightarrow \tau_{n} \rightarrow \tau\right)^{\mathcal{T}}, \text { cTree }\right)
$$

In addition to the constructors and functions obtained by transforming those occurring in P 's the signature of $P^{\mathcal{T}}$ always includes some additional auxiliary function symbols, which will be introduced in Section 4.4 below.

4.3 Defining Auxiliary Functions

Each auxiliary function $f_{m}^{\mathcal{T}}$ expects $m+1$ arguments and returns a partial application of $f_{m+1}^{\mathcal{T}}$ paired with a trivial CT. Exceptionally, $f_{n-2}^{\mathcal{T}}$ returns a partial application of $f^{\mathcal{T}}$. The auxiliary functions $c_{m}^{\mathcal{T}}$ are defined similarly, except that $c_{n-1}^{\mathcal{T}}$ returns a value built with the data constructor c.

$$
\begin{array}{ll}
f_{0}^{\mathcal{T}} X_{1} \rightarrow\left(f_{1}^{\mathcal{T}} X_{1}, \text { void }\right) & c_{0}^{\mathcal{T}} X_{1} \rightarrow\left(c_{1}^{\mathcal{T}} X_{1}, \text { void }\right) \\
f_{1}^{\mathcal{T}} X_{1} X_{2} \rightarrow\left(f_{2}^{\mathcal{T}} X_{1} X_{2}, \text { void }\right) & c_{1}^{\mathcal{T}} X_{1} X_{2} \rightarrow\left(c_{2}^{\mathcal{T}} X_{1} X_{2}, \text { void }\right) \\
\ldots & \ldots \\
f_{n-2}^{\mathcal{T}} \bar{X}_{n-1} \rightarrow\left(f^{\mathcal{T}} \bar{X}_{n-1}, \text { void }\right) & c_{n-1}^{\mathcal{T}} \bar{X}_{n} \rightarrow\left(c \bar{X}_{n}, \text { void }\right)
\end{array}
$$

4.4 Transforming Function Definitions

Each program rule $f t_{1} \ldots t_{n} \rightarrow r \Leftarrow J C$ where $L D$ occurring in P is transformed into a corresponding program rule for $f^{\mathcal{T}}$ in $P^{\mathcal{T}}$. We can assume that $J C$ consists of joinability conditions $l_{i}==r_{i}$ and $L D$ consists of local definitions $s_{j} \leftarrow d_{j}$ written in a textual order which fulfills the admissibility properties required for the conditions of program rules (see Section 2.2.1). Then the transformed program rule is constructed as follows:

$$
\begin{aligned}
f^{\mathcal{T}} t_{1}^{\mathcal{T}} \ldots t_{n}^{\mathcal{T}} & \rightarrow(R, T) \Leftarrow \ldots L S_{i}==R S_{i} \ldots \\
\text { where }\{ & \ldots \\
s_{j}^{\mathcal{T}} & \leftarrow d_{j}^{\mathcal{T}} ; \\
& \ldots \\
L S_{i} & \leftarrow l_{i}^{\mathcal{T}} ; \\
R S_{i} & \leftarrow r_{i}^{\mathcal{T}} ; \\
& \ldots \\
R & \leftarrow r^{\mathcal{T}} ; \\
T & \left.\leftarrow c \text { Node } " f "\left[d V \text { Val } t_{1}^{\mathcal{T}}, \ldots, d \text { Val } t_{n}^{\mathcal{T}}\right](d V a l ~ R) " f . p^{\prime \prime}(\text { clean }[])\right\} \downarrow
\end{aligned}
$$

Some additional explanations are needed at this point:

- $t_{l}^{\mathcal{T}}, s_{j}^{\mathcal{T}}, d_{j}^{\mathcal{T}}, l_{i}^{\mathcal{T}}, r_{i}^{\mathcal{T}}$ and $r^{\mathcal{T}}$ refer to an expression transformation (defined below) which converts any $e:: \tau$ of signature Σ into $e^{\mathcal{T}}:: \tau^{\mathcal{T}}$ of signature $\Sigma^{\mathcal{T}}$.
$-R, T, L S_{i}, R S_{i}$ are new fresh variables, and p is an index which represents the position of the program rule, in textual order.
-The notation $\{\ldots\} \downarrow$ refers to a transformation of the local definitions explained below.
$-\mathrm{dVal}:: \mathrm{A} \rightarrow \mathrm{pVal}$ is an auxiliary impure function without declarative meaning, very similar to dirt in [20,25]. Any call (dVal a) (read: "demanded value of a") returns a representation of the partial approximation of a's value which was needed to complete the top level computation. The debugger's implementation can compute this from the internal structure representing a at the end of the main computation, replacing all occurrences of suspended function calls by "_", which represents the undefined value \perp^{6}. Moreover, dVal also renames all the identifiers of auxiliary functions $f_{m}^{\mathcal{T}}$ resp. $c_{m}^{\mathcal{T}}$ into f resp. c. In this way, the patterns representing computed results are translated back to the original signature.
The expression transformation $e \mapsto e^{\mathcal{T}}$ is defined by recursion on e^{\prime} s syntactic structure. The idea is to transform the (possibly partial) applications of functions and constructors within e, using functions from the transformed signature. In order to ensure $e^{\mathcal{T}}:: \tau^{\mathcal{T}}$ whenever $e:: \tau$, we use two auxiliary application operators:

$$
\begin{array}{ll}
@_{0}::(\beta, \mathrm{c} \text { Tree }) \rightarrow \beta & (@)::(\alpha \rightarrow(\beta, \mathrm{c} \text { Tree })) \rightarrow \alpha \rightarrow \beta \\
@_{0} \mathrm{~F} \rightarrow \mathrm{R} \text { where }\{(\mathrm{R}, \mathrm{~T}) \leftarrow \mathrm{F}\} & \mathrm{F} @ \mathrm{X} \rightarrow \mathrm{R} \text { where }\{(\mathrm{R}, \mathrm{~T}) \leftarrow \mathrm{FX}\}
\end{array}
$$

These are used within $e^{\mathcal{T}}$ at those points where the application of a function from the translated signature (to a number of parameters equal to its arity) is expected to return a value paired with a CT. Applications of higher-order

[^3]variables are treated in a similar way. Formally:
\[

$$
\begin{aligned}
& \left(X a_{1} \ldots a_{k}\right)^{\mathcal{T}}=\left(\ldots\left(X @ a_{1}^{\mathcal{T}}\right) @ \ldots\right) @ a_{k}^{\mathcal{T}} \quad(X \in \operatorname{Var}, k \geq 0) \\
& \left(c e_{1} \ldots e_{m}\right)^{\mathcal{T}}=c_{m}^{\mathcal{T}} e_{1}^{\mathcal{T}} \ldots e_{m}^{\mathcal{T}} \quad\left(c \in D C^{n}, m<n, n>0\right) \\
& \left(c e_{1} \ldots e_{n}\right)^{\mathcal{T}}=c e_{1}^{\mathcal{T}} \ldots e_{n}^{\mathcal{T}} \quad\left(c \in D C^{n}, n \geq 0\right) \\
& \left(f a_{1} \ldots a_{k}\right)^{\mathcal{T}}=\left(\ldots\left(\left(@_{0} f^{\mathcal{T}}\right) @ a_{1}^{\mathcal{T}}\right) @ \ldots\right) @ a_{k}^{\mathcal{T}} \quad\left(f \in F S^{0}, k \geq 0\right) \\
& \left(f e_{1} \ldots e_{m}\right)^{\mathcal{T}}=f_{m}^{\mathcal{T}} e_{1}^{\mathcal{T}} \ldots e_{m}^{\mathcal{T}} \quad\left(f \in F S^{n}, n>0, m<n-1\right) \\
& \left(f e_{1} \ldots e_{n-1} a_{1} \ldots a_{k}\right)^{\mathcal{T}}=\left(\ldots\left(\left(f^{\mathcal{T}} e_{1}^{\mathcal{T}} \ldots e_{n-1}^{\mathcal{T}}\right) @ a_{1}^{\mathcal{T}}\right) @ \ldots\right) @ a_{k}^{\mathcal{T}} \\
& \\
& \quad\left(f \in F S^{n}, n>0, k \geq 0\right)
\end{aligned}
$$
\]

From the previous specification it is easy to see that the translation $t^{\mathcal{T}}$ of a pattern t does not have any occurrences of the auxiliary application operators and is in fact another pattern, from which t can be univocally recovered. Coming back to the construction of translated program rules, we see that the translated expressions $t_{l}^{\mathcal{T}}, s_{j}^{\mathcal{T}}, d_{j}^{\mathcal{T}}, l_{i}^{\mathcal{T}}, r_{i}^{\mathcal{T}}$ and $r^{\mathcal{T}}$ are intended to ensure well-typing, but seemingly ignore CTs. In particular, the local definition of T renders a CT whose root has complete information about the arguments, result and program rule corresponding to a particular call to function f, but the list of children CTs seems to be empty. In fact this is not the case, because the local definitions $\{\ldots\}$ are further translated into $\{\ldots\} \downarrow$, which means that the normal form obtained by applying the transformation rules $A P_{0}$ and $A P_{1}$ defined below, with a leftmost-innermost strategy. The notation $e\left[e_{1}\right]$ must be undestood as an expression containing in occurrence of the subexpression e_{1} in some context.

- $A P_{0}$:
$\left\{\ldots ; p \leftarrow e\left[@_{0}\right.\right.$ fun $] ; \ldots T \leftarrow$ cNode $\ldots($ clean $\left.l p)\right\} \longrightarrow$
$\left\{\ldots ;\left(R^{\prime}, T^{\prime}\right) \leftarrow\right.$ fun $; p \leftarrow e\left[R^{\prime}\right] ; \ldots T \leftarrow \mathrm{cNode} \ldots\left(\right.$ clean $\left.\left.\left(l p++\left[\left(\mathrm{dVal} R^{\prime}, T^{\prime}\right)\right]\right)\right)\right\}$
- $A P_{1}$:
$\{\ldots ; p \leftarrow e[$ fun @ arg $] ; \ldots T \leftarrow$ cNode $\ldots($ clean $l p)\} \longrightarrow$
$\left\{\ldots ;\left(R^{\prime}, T^{\prime}\right) \leftarrow\right.$ fun arg $; p \leftarrow e\left[R^{\prime}\right] ; \ldots T \leftarrow$ cNode $\ldots\left(\right.$ clean $\left.\left.\left(l p++\left[\left(\mathrm{dVal} R^{\prime}, T^{\prime}\right)\right]\right)\right)\right\}$
In both transformations, " ++ " stands for the list concatenation function. R^{\prime} and T^{\prime} must be chosen as new fresh variables, and p is a the pattern in the translated signature, occurring as lefthand side of a local definition whose righthand side includes a leftmost-innermost occurrence of an application operator ($@_{0}$ fun) or (fun @ arg) in some context. Because of the innermost strategy, we can claim:
(i) $A P_{0}$ always finds $f u n=g^{\mathcal{T}}$, for some nullary function symbol $g \in F S^{0}$.
(ii) $A P_{1}$ always finds $\arg =s_{m}^{\mathcal{T}}$ for some pattern s_{m} in P 's signature; and either $f u n$ is a variable, or else $f u n=g^{\mathcal{T}} s_{1}^{\mathcal{T}} \ldots s_{m-1}^{\mathcal{T}}$ for some $g \in$ $F S^{m}, m>0$ and some patterns s_{1}, \cdots, s_{m-1} in P 's signature.

Each application of the $A P$ transformations eliminates the currently leftmostinnermost occurrence of an application operator, while introducing a new local definition for the result R^{\prime} and the computation tree T^{\prime} coming from that application, and adding the pair (dVal R^{\prime}, T^{\prime}) to the list of children of T. The innermost strategy ensures that no application operators occur in the new local definition. Since the initial number of application operators is finite, the process is terminating and the normal form always exists. When the $A P$ transformations terminate, no application operators remain. Therefore, $@_{0}$ and @ do not occur in transformed programs. All the occurrences of "++" within the righthand side of T 's local definition can be removed, by performing a simple partial evaluation by unfolding w.r.t. the usual definition of list concatenation. This leads to a list lp :: [(pVal, cTree)] including as many CTs as application operators did occur in the local definitions, each of them paired with a partial result. Finally, the call to the auxiliary function clean is introduced, in order that the execution of (clean lp) at run time can build the ultimate list of children CTs. The definition of clean is such that all the pairs (pv, ct) in lp such that pv represents \perp or ct is void are ignored, thus avoiding useless nodes to occur in the final CT. The program rules defining clean and some other auxiliary functions, shown below, must be included in any transformed program.

```
clean :: [(pVal, cTree)] \(\rightarrow\) cTree
clean [] \(\rightarrow \quad\) []
clean \(((R, T):\) Rest \() \rightarrow\) clean Rest \(<=\) irrelevant \((R, T)==\) true
clean \(((R, T):\) Rest \() \rightarrow T\) : clean Rest \(<=\) irrelevant \((R, T)==\) false
irrelevant :: (pVal, cTree) \(\rightarrow\) bool
irrelevant \((R, T) \quad \rightarrow \quad\) true \(<=\) isBottom \(R==\) true
irrelevant \((R, T) \quad \rightarrow \quad\) isVoid \(T<=\) isBottom \(R==\) false
isBottom :: pVal \(\rightarrow\) bool
isBottom \(\mathrm{R} \rightarrow\) if \(\mathrm{R}==\) " " then true else false
isVoid :: cTree \(\rightarrow\) bool
isVoid void \(\quad \rightarrow\) true
isVoid (cTree Fun Args Result Rule Children) \(\rightarrow\) false
```

Note that the definition of isBottom uses a conditional expression, a language feature which is supported by $\mathcal{T O Y}$, although not included in the formal presentation of FLP programs given in Section 2.1.2. This completes the description of the program transformation, except for the behaviour of dVal. This impure function cannot be defined by ordinary program rules, and it must be provided at some lower, implementation dependent level ${ }^{7}$. In our current

[^4]debugging tool for the FLP language $\mathcal{T} \mathcal{O} \mathcal{Y}$, the fuction dVal is implemented in Prolog, as the rest of the $\mathcal{T O Y}$ system. The final form of a transformed program rule is shown below.
\[

$$
\begin{aligned}
& f^{\mathcal{T}} t_{1}^{\mathcal{T}} \ldots t_{n}^{\mathcal{T}} \rightarrow(R, T) \Leftarrow \ldots L S_{i}==R S_{i} \ldots \\
& \text { where }\left\{\begin{array}{l}
\\
\\
\left(R_{k}, T_{k}\right)
\end{array}\right. \leftarrow \text { call }_{k}^{\mathcal{T}} ; \\
& \ldots \\
& s_{j}^{\mathcal{T}} \leftarrow w_{j}^{\mathcal{T}} ; \\
& \ldots \\
& L S_{i} \leftarrow u_{i}^{\mathcal{T}} ; \\
& R S_{i} \leftarrow v_{i}^{\mathcal{T}} ; \\
& \ldots \\
& R \leftarrow v^{\mathcal{T}} ; \\
& T \leftarrow \mathrm{cNode} " f "\left[d V a l t_{1}^{\mathcal{T}}, \ldots, d \text { Val } t_{n}^{\mathcal{T}}\right](\text { dVal } R) " f . p " \\
&\left.\quad\left(\text { clean }\left[\cdots,\left(\text { dVal } R_{k}, T_{k}\right), \cdots\right]\right)\right\}
\end{aligned}
$$
\]

Here, the transformed patterns $t_{l}^{\mathcal{T}}$ and $s_{j}^{\mathcal{T}}$ are as explained before, while the transformed patterns $w_{j}^{\mathcal{T}}, u_{i}^{\mathcal{T}}, v_{i}^{\mathcal{T}}$ and $v^{\mathcal{T}}$ are which remains from the transformed expressions $d_{j}^{\mathcal{T}}, l_{i}^{\mathcal{T}}, r_{i}^{\mathcal{T}}$ and $r^{\mathcal{T}}$ upon termination of the $A P$ transformations. Moreover, the local definitions $\left(R_{k}, T_{k}\right) \leftarrow c a l l_{k}^{\mathcal{T}}$ have been created by the $A P$ transformations, applied in leftmost-innermost order. For each k, $\operatorname{call}_{k}^{\mathcal{T}}$ is the transformed form of a function call call $_{k}$ in the original signature, which must have one of the two following forms:
(i) call $_{k}=g \bar{s}_{m}$, for some $g \in F S^{m}, m \geq 0$ and some patterns \bar{s}_{m}.
(ii) call $_{k}=F s$, for some variable F and some pattern s.

Note that the possible forms of call $_{k}$ correspond to the possible forms of fun and \arg when the $A P$ transformations are applied, as explained above.

4.5 An Example

Below we show part of the type declarations and program rules resulting from the transformation of the simple program from Section 2.2.2. For the sake of a simpler concrete syntax, we write " $f^{\prime \prime}$ " instead of " $f^{\mathcal{T}}$ " for translated symbols.

```
times' :: nat \(\rightarrow\) nat \(\rightarrow\) (nat, cTree)
times' \((\) suc \(X) Y \rightarrow(R, T)\)
    where \(\quad(M, T 1) \leftarrow\) times' \(X Y\)
                                    \((\mathrm{N}, \mathrm{T} 2) \leftarrow\) plus' XM
                                    \(R \leftarrow N\)
                                    \(\mathrm{T} \leftarrow \quad \mathrm{cNode}\) "times" [dVal (suc X ), dVal Y\(]\) (dVal R)
                                    "times.2" (clean [(dVal M,T1), (dVal N,T2)])
```

```
twice' :: \((\mathrm{A} \rightarrow(\mathrm{A}, \mathrm{cTree})) \rightarrow \mathrm{A} \rightarrow(\mathrm{A}, \mathrm{cTree})\)
twice' \(\mathrm{FX} \rightarrow(\mathrm{R}, \mathrm{T})\)
    where \(\quad(\mathrm{Y}, \mathrm{T} 1) \leftarrow \mathrm{FX}\)
    \((\mathrm{Z}, \mathrm{T} 2) \leftarrow \mathrm{FY}\)
    \(R \leftarrow \quad Z\)
    \(\mathrm{T} \leftarrow \quad \mathrm{cNode}\) "twice" [dVal F, dVal X] (dVal R)
                            "twice.1" (clean [(dVal Y,T1), (dVal Z,T2)])
drop4' :: ([A] \(\rightarrow\) ([A], cTree), cTree)
drop4' \(\rightarrow(\mathrm{R}, \mathrm{T})\)
    where \(\quad(\mathrm{F}, \mathrm{T} 1) \leftarrow \quad\) twice' twice0' tail'
    \(R \leftarrow \quad F\)
    \(\mathrm{T} \leftarrow \mathrm{cNode}\) "drop4" [] (dVal R)
                                "drop4.1" (clean [(dVal F,T1)]))
```

Note that the transformation of the program rule defining drop4 starts by transforming twice twice tail into twice ${ }^{\mathcal{T}}$ twice $_{0}^{\mathcal{T}} @$ tail ${ }^{\mathcal{T}}$, which gives rise to $\left(F, T_{1}\right) \leftarrow$ twice $^{\mathcal{T}}$ twice $_{0}^{\mathcal{T}}$ tail $^{\mathcal{T}}$ by application of an $A P$ transformation. Careful examination of this example is left as an exercise for the reader.

4.6 Transforming Goals

The debugging process can be started whenever some answer θ computed for a goal G is considered erroneous by the user. For the sake of a simpler presentation, we will assume that G includes no local definitions. This is no serious limitation in practice. In order to build a suitable CT for the navigation phase, an auxiliary function definition

$$
\text { sol } \overline{X_{n}}=\text { true } \Leftarrow G
$$

is considered, whose translation is automatically added to the transformed program. Here, $\overline{X_{n}}$ are the variables occurring in G. Due to the assumption that G includes no local definitions, all these variables are allowed to occur as formal parameters of sol. Using the answer substitution θ which has been already computed by the goal solving system, the debugger can build the transformed goal

$$
\operatorname{sol}^{\mathcal{T}} \overline{X_{n}} \theta^{\mathcal{T}}==(\text { true, Tree })
$$

As we will prove in Section 4.8, solving this goal with the transformed program leads to a solution which binds no variables in $\overline{X_{n}} \theta^{\mathcal{T}}$ and binds Tree to an APT witnessing $P \vdash_{S C} G \theta$. According to Theorem 2.5, navigating this APT leads to some buggy node which points to an incorrect instance of program rule in P.

In the case of our simple program from Section 2.2.2, a user could decide to activate the debugger after observing the wrong computed answer $\theta=\{X \mathrm{~s} \mapsto$ $\mathrm{X}: \mathrm{X}:[]\}$ for the goal

$$
\text { take }(\text { suc }(\text { suc } z))(\text { from } X)==X s
$$

In this situation, the debugger would use the transformed program to solve the goal

$$
\operatorname{sol}^{\mathcal{T}} \mathrm{X}(\mathrm{X}: \mathrm{X}:[])==(\text { true, Tree })
$$

This would bind the variable Tree to an APT essentially equivalent to the one shown in Fig. 2^{8}, and debugging would proceed by navigating this APT.

4.7 Program Flattening

As a convenient technical device for proving some of the results in the coming section, we introduce another program transformation, called flattening. Intuitively, flattening a program means to eliminate nested function calls both in the right-hand sides and in the conditions of function defining rules. This can be done by introducing new local definitions.

The idea of flattening is not a new one. It played an important rôle in the operational semantics of K-LEAF, a pioneering functional logic language [7]. In our present context, flattening becomes important because of its close relationship to the transformation of program rules described above in Section 4.4. In fact, flattening a program rule for $f \in F S^{n}$ whose transformed form is as shown at the end of Section 4.4 yields, by the definition, the following:

```
\(f t_{1} \ldots t_{n} \rightarrow R \Leftarrow \ldots L S_{i}==R S_{i} \ldots\)
    where\{
        \(R_{k} \leftarrow\) call \(_{k} ;\)
        \(s_{j} \leftarrow w_{j} ;\)
        \(L S_{i} \leftarrow u_{i} ;\)
        \(R S_{i} \leftarrow v_{i} ;\)
            \(R \leftarrow v\)
        \}
```

Flattening a whole program P is defined as the result of flattening one by one all the function defining rules belonging to P, which yields an intuitively equivalent program P_{F} with the same signature, called the flat form of P. For instance, the flat form of our simple program P from section 2.2.2 contains, among others, the program rules shown below. Their correspondence with the transformed program rules in $P^{\mathcal{T}}$ shown in Section 4.4 should be obvious.

[^5]```
times :: nat }->\mathrm{ nat }->\mathrm{ nat
times (suc X) Y }->\textrm{R
 where }\textrm{M}\leftarrow\mathrm{ times }X\textrm{Y
 N}\leftarrow\mathrm{ plus X M
 R}\leftarrow
```

twice: $:(A \rightarrow A) \rightarrow A \rightarrow A$
twice $\mathrm{FX} \rightarrow \mathrm{R}$
where $\mathrm{Y} \leftarrow \mathrm{FX}$
$Z \leftarrow F Y$
$\mathrm{R} \leftarrow \mathrm{Z}$
drop4 $::[A] \rightarrow[A]$
drop4 $\rightarrow \mathrm{R}$
where $\mathrm{F} \leftarrow$ twice twice tail
$\mathrm{R} \leftarrow \mathrm{F}$

Note that programs in flat form only use flat function calls of the form $\left(f t_{1} \ldots t_{n}\right)$, with $f \in F S^{n}$ and $t_{1}, \ldots, t_{n}$ patterns. Therefore proofs built in the semantic calculus $S C$ do not need the inference rule $A R$ when the program and the statement to be deduced are flat. This is because all the arguments of function calls met in the course of such a proof will necessarily be patterns. Let $F S C$ be the variant of $S C$ consisting of all the inference rules specified in Section 2.3.1, but with $F A$ in place of $A R+F A$. The following result guarantees that the semantics of functions, as specified by the calculus $S C$, is preserved by flattening.

Theorem 4.1 For every program $P$, for all $f \in F S^{n}$, and for all partial patterns $\overline{t_{n}}, s \in P a t_{\perp}: P \vdash_{S C} f \bar{t}_{n} \rightarrow s$ holds iff $P_{F} \vdash_{F S C} f \bar{t}_{n} \rightarrow s$. Moreover, the same witnessing APT can be chosen for both deductions.

## Proof Idea

This follows from a more general result which relates a $S C$ deduction of the form $P \vdash_{S C} e \rightarrow s$ (with $e \in \operatorname{Exp}_{\perp}, s \in P a t_{\perp}$ ) to a corresponding $F S C$ deduction using the flat form of $e$. Building the proof relies on the recursive definition of a flattening transformation of expressions and program rules. In fact, this can be used as an alternative way to define the program rule transformation presented in Section 4.4. Details are left outside of the scope of this paper.

### 4.8 Correctness Results

Now we are ready to present the three main results about the correctness of our program transformation, whose proofs are given in Appendix A. The first result concerns the type discipline. It guarantees that the debugger does not
need to perform any type checking/inference before entering the CT generation phase, which proceeds as explained in Section 4.6.

Theorem 4.2 The transformation $P^{\mathcal{T}}$ of a well-typed program $P$ is always well-typed.

The second result says that the semantics of any transformed function $f^{\mathcal{T}}$ in a transformed program $P^{\mathcal{T}}$ is the same as the semantics of $f$ in the original program $P$, except that calls to $f^{\mathcal{T}}$ also return APTs, represented as values of type c Tree.

Theorem 4.3 Consider any n-ary function $f$ and arbitrary partial patterns $\overline{t_{n}}, t$ in the signature of a program $P$.
(i) Assume $P \vdash_{S C} \quad f \bar{t}_{n} \rightarrow t$ and let apt be a witnessing APT for this deduction. Then $P^{\mathcal{T}} \vdash_{F S C^{\mathcal{T}}} f^{\mathcal{T}} \overline{t_{n}^{\mathcal{T}}} \rightarrow\left(t^{\mathcal{T}}\right.$, ct), where ct $::$ cTree is a total pattern which represents apt.
(ii) Assume $P^{\mathcal{T}} \vdash_{F S C^{\mathcal{T}}} f^{\mathcal{T}} \overline{t_{n}^{\mathcal{T}}} \rightarrow\left(t^{\mathcal{T}}, c t\right)$. Then $P \vdash_{S C} f \bar{t}_{n} \rightarrow t$.

## Proof Idea.

Due to Theorem 4.1, the $S C$ deduction $P \vdash_{S C} f \bar{t}_{n} \rightarrow t$ can be replaced by the $F S C$ deduction $P_{F} \vdash_{F S C} f \bar{t}_{n} \rightarrow t$ in the statement of the theorem. Intuitively, this makes the result plausible, due to the close correspondence between flat program rules and transformed program rules. The notation $F S C^{\mathcal{T}}$ refers to a variant of the flat semantic calculus $F S C$, which must be used for deductions with transformed programs. $F S C^{\mathcal{T}}$ consists of the inference rules of $S C$ but with $F A$ in place of $A R+F A$ and with the addition of special metarules which formalize the behaviour of the impure function dVal. Full details are given in Appendix A.

Our last result shows that the goal transformation described in Section 4.6 is indeed suitable to generate correct APTs. Before presenting the theorem, we formalize certain assumptions about the undelying goal solving system. The theorem holds for every goal solving system which satisfies these assumptions.

## Definition 4.4

(a) A goal solving system $G S$ is assumed to produce an ordered sequence of computed answers $\theta_{i}$ for a given program $P$ and a goal $G$. Each computed answer $\theta_{i}$ is assumed to be a substitution of patterns for variables occurring in $G$. We write $G \Vdash_{G S, P} \theta$ to indicate that $\theta$ is one of the answers for $G$ computed by $G S$ with program $P$. Similarly, we write $G \stackrel{\vdash_{G S, P}^{1 s t}}{ } \theta$ to indicate that $\theta$ is the first answer for $G$ computed by $G S$ using program $P$.
(b) Given a goal solving system $G S$, we say
(b.1) $G S$ is stable iff for every program $P$ and every goal $G$ without local
definitions: if $G \Vdash_{G S, P} \theta$ then sol $\bar{X}_{n} \theta==$ true $\Vdash_{G S, P_{s o l}}^{1 \text { st }}$ id, where $P_{\text {sol }}=P \uplus\left\{\right.$ sol $\bar{X}_{n} \rightarrow$ true $\left.\Leftarrow G\right\}$, with a new n-ary function symbol sol and $\bar{X}_{n}=\operatorname{var}(G)$.
(b.2) $G S$ is sound iff for every program $P$ and goal $G$, if $G \Vdash_{G S, P} \theta$ then $P \vdash_{S C} G \theta$.
(b.3) GS is weakly complete iff for every program $P$, for any $p:: \bar{\tau}_{n} \rightarrow$ bool and for all patterns $\bar{t}_{n}$ in $P^{\prime} s$ signature: If $p \bar{t}_{n}==\operatorname{true} \Vdash_{G S, P}^{1 s t} i d$, and apt is the APT for $P \vdash_{S C} p \bar{t}_{n} \rightarrow$ true witnessing the previous computation (which exists by soundness) and $P^{\mathcal{T}} \Vdash F S C^{\mathcal{T}} p^{\mathcal{T}} \bar{t}^{\mathcal{T}}{ }_{n} \rightarrow$
 $\{T \mapsto c t\}$.
(b.4) $G S$ is reasonable iff $G S$ is stable, sound and weakly complete.

The items of the previous definition are intended as minimal requirements that should be fulfilled by goal solving systems based on lazy narrowing strategies. Weak completeness is a sensible assumption because of Theorem 4.3 (i), and stability can be guarenteed by treating all the variables occurring in $\bar{X}_{n} \theta$ as constants when solving a goal sol $\bar{X}_{n} \theta==$ true.
We believe that the goal solving system underlying $\mathcal{T} \mathcal{O} \mathcal{Y}$ [14] is reasonable in the technical sense of Definition 4.4 but presently we do not intend to support our belief by a mathematical proof. It would be a very hard task, as any formal correctness proof for a complex software system.
Now we are in a position to state:
Theorem 4.5 Let $G$ be a goal with variables $\overline{X_{n}}$ and without local definitions. Assume that $\theta$ has been computed as an answer for $G$ using program $P$. Consider the program $P_{\text {sol }}$ obtained by adding to $P$ the new auxiliary function definition sol $\overline{X_{n}}=$ true $\Leftarrow G$. If the goal solving system is reasonable, solving the transformed goal sol ${ }^{\mathcal{T}} \overline{X_{n}} \theta^{\mathcal{T}}==$ (true, Tree) with the transformed program $P_{\text {sol }}^{\mathcal{T}}$ succeeds. Moreover, the first computed answer binds no variables in $\overline{X_{n}} \theta^{\mathcal{T}}$ and binds Tree to an APT wittnessing $P \vdash_{S C} G \theta$.

A proof of this theorem can be found in Appendix A. Although the result holds for any computed answer $\theta$, its interest for debugging is restricted to the case that $\theta$ is seen by the user as a wrong computed answer. In this case, the debugger can find an incorrect program rule by navigating the APT, as explained in Section 4.6.

## 5 Navigating the CTs by Oracle Querying

In this Section we present a technique used by our debugger to avoid redundant questions to the oracle during the navigation phase. We also present a simple example of debugging session. More examples can be found in Appendix B.
Once the CT associated to a wrong answer has been built (as described in

Section 4.6), navigation performs a top-down traversal, asking the oracle about the validity of the basic facts associated to the visited nodes (except for the root, which is known to be erroneous in advance). For the sake of practical usefulness, it is important to ensure that questions asked to the oracle are as few and as simple as possible.
The second condition - simplicity - comes along with our choice of APTs as CTs, since basic facts are the minimal pieces of information needed to characterize the intended model of a program, as we have seen in Section 2.3.4. To reduce the number of questions, the only possibility considered in related papers is to avoid asking repeated questions. As an improvement, we present an entailment relation between basic facts, and we show that it can be used to avoid redundant questions which can be deduced from previous answers.

Our notion of entailment is based on the approximation ordering $\sqsubseteq$ defined in Section 2.1.2. By definition, a basic fact $f \bar{t}_{n} \rightarrow t$ entails another basic fact $f \bar{s}_{n} \rightarrow s$ (written as $f \bar{t}_{n} \rightarrow t \succeq f \bar{s}_{n} \rightarrow s$ ) iff there is some total substitution $\theta \in$ Subst such that

$$
t_{1} \theta \sqsubseteq s_{1}, \ldots, t_{n} \theta \sqsubseteq s_{n}, s \sqsubseteq t \theta
$$

Due to Proposition 2.1 item (i), we can also write these conditions as:

$$
s_{1} \rightarrow t_{1} \theta, \ldots, s_{n} \rightarrow t_{n} \theta, t \theta \rightarrow s
$$

Entailment between basic fact can be decided by means of the next algorithm.

## Algorithm

Let $f \bar{t}_{n} \rightarrow t$ and $f \bar{s}_{n} \rightarrow s$ be two basic facts which share no common variables. In order to decide whether $f \bar{t}_{n} \rightarrow t \succeq f \bar{s}_{n} \rightarrow s$ we define a system of transformations, somewhat similar to those used in Martelli and Montanari's unification algorithm. The transformations are applied to a multiset $S$ of approximation statements $a \rightarrow b$, with $a, b \in P a t_{\perp}$, together with a set of variables $W$. Both are represented together in the form: $S \square W$, which we will call a configuration from now on.

We say that $S \theta$ holds, with $\theta \in S u b s t$, iff for all $s \rightarrow t \in S, t \theta \sqsubseteq s \theta$. The set of solutions of a configuration $S \square W$ is defined as the set of total substitutions over variables in $W$ for which all the approximation statements in $S$ do hold, i.e.: $\operatorname{Sol}(S \square W)=\{\theta \in S u b s t \mid \operatorname{dom}(\theta) \subseteq W, \operatorname{ran}(\theta) \subseteq P a t, S \theta$ holds $\}$.

The purpose of the algorithm is to find some solution for the initial configuration $S_{0} \square W_{0}$ with $S_{0}=s_{1} \rightarrow t_{1}, \ldots, s_{n} \rightarrow t_{n}, t \rightarrow s$ and $W_{0}=\operatorname{var}\left(f \bar{t}_{n} \rightarrow t\right)$, i.e. we indicate that only variables in $f \bar{t}_{n} \rightarrow t$ can be instantiated. At each step of the algorithm a configuration $S_{i} \square W_{i}$ is transformed into a new one $S_{i+1} \square W_{i+1}$ producing a substitution $\theta_{i+1}$. This is done by applying some (nondeterministically) selected transformation rule to any (non-deterministically)
selected element $a \rightarrow b$ of $S_{i}$. Such step can be represented as

$$
\underbrace{a \rightarrow b, S}_{S_{i}} \square W_{i} \quad \vdash_{\theta_{i}} \quad S_{i+1} \square W_{i+1}
$$

For the sake of simplicity, sometimes we will write a configuration $S_{i} \square W_{i}$ as $K_{i}$. The transformation rules are presented below.

## Transformation Rules

In the following we assume $X, Y \in \operatorname{Var}$ with $X \in W ; a_{k}, b_{k}, t \in P a t_{\perp}$; $s \in P a t ;$ and $h \in D C \cup F S$. Moreover, $X_{k}$ represent new, fresh variables.

$$
\begin{array}{lll}
R 1 Y \rightarrow Y, S \square W & \vdash_{i d} & S \square W \\
R 2 t \rightarrow \perp, S \square W & \vdash_{i d} & S \square W \\
R 3 h \bar{a}_{m} \rightarrow h \bar{b}_{m}, S \square W & \vdash_{i d} & \ldots, a_{k} \rightarrow b_{k}, \ldots S \square W \\
R 4 s \rightarrow X, S \square W & \vdash_{\{X \mapsto s\}} & S\{X \mapsto s\} \square W \\
R 5 X \rightarrow Y, S \square W & \vdash_{\{X \mapsto Y\}} & S\{X \mapsto Y\} \square W \\
R 6 X \rightarrow h \bar{a}_{m}, S \square W & \left.\vdash_{\{X \mapsto h} \bar{X}_{m}\right\} & \cdots, X_{k} \rightarrow a_{k}, \ldots S\left\{X \mapsto h \bar{X}_{m}\right\} \square W, \bar{X}_{m}
\end{array}
$$

The algorithm finishes when a configuration is reached s.t. no transformation can be applied. Next theorem ensures that such configuration always exists, as well as its relationship with the entailment. The proof can be found in Appendix A.

Theorem 5.1 The algorithm described above always stops in some configuration $S_{j} \square W_{j}$ which cannot be further transformed. Moreover, the initial entailment $f \bar{t}_{n} \rightarrow t \succeq f \bar{s}_{n} \rightarrow s$ holds iff $S_{j}=\emptyset$.

Now, the interest of the entailment for declarative debugging is justified by the next result.

Theorem 5.2 Entailment between basic facts is a decidable preorder. Moreover, any intended model given as a Herbrand interpretation $\mathcal{I}$ is closed under entailment, i.e. if $f \bar{t}_{n} \rightarrow t \succeq f \bar{s}_{n} \rightarrow s$ and $\left(f \bar{t}_{n} \rightarrow t\right) \in \mathcal{I}$ then $\left(f \bar{s}_{n} \rightarrow s\right) \in \mathcal{I}$.

## Proof.

The fact that Herbrand interpretations are closed under entailment is a straightforward consequence from the definition of the entailment relation and conditions (ii), (iii) in the definition of Herbrand interpretation (see Section 2.3.4). The definition of entailment also implies easily that $\succeq$ is a reflexive and transitive relation, and thus a preorder. In order to prove that $\succeq$ is decidable, let us consider two arbitrary basic facts $f \bar{t}_{n} \rightarrow t, f \bar{s}_{n} \rightarrow s$ and choose any renaming $\rho$ such that $\left(f \bar{t}_{n} \rightarrow t\right) \rho$ and $f \bar{s}_{n} \rightarrow s$ share no variables. By definition of entailment, (a) and (b) below are equivalent:
(a) $f \bar{t}_{n} \rightarrow t \succeq f \bar{s}_{n} \rightarrow s$
(b) $\left(f \bar{t}_{n} \rightarrow t\right) \rho \succeq f \bar{s}_{n} \rightarrow s$

Finally, Theorem 5.1 ensures that (b) can be decided by applying the algorithm described above to the initial configuration $S_{0} \square W_{0}$, where:

$$
S_{0}=s_{1} \rightarrow t_{1} \rho, \ldots, s_{n} \rightarrow t_{n} \rho, t \rho \rightarrow s \quad W_{0}=\operatorname{var}\left(\left(f \bar{t}_{n} \rightarrow t\right) \rho\right)
$$

Thanks to Theorem 5.2 an oracle question $Q$ entailed by a fact already known to be valid because of some previous answer must be valid. For instance, if we already know that from $X \rightarrow X$ :suc $X: \perp$ is valid, other basic facts entailed by this one, such as from $z \rightarrow z: \perp$ and from (suc $Y$ ) $\rightarrow$ suc $Y:$ suc (suc $Y$ ): $\perp$ must also be valid. Dually, a question $Q$ which entails a fact known to be invalid because of some previous answer, must be invalid. For instance, if we know from a previous answer that from $z \rightarrow$ suc $z: \perp$ is not valid, then other basic facts that entail this one, such as from $X \rightarrow$ suc $X$ :suc (suc $X$ ):[] must be also invalid. In both cases, a question to the oracle can be avoided.
Our debugger has been implemented as part of the $\mathcal{T} \mathcal{O} \mathcal{Y}$ system. A prototype version can be downloaded from http://titan.sip.ucm.es/toy/. Here we show a debugging session for a program which contains the wrong definition of the function times already discussed in Section 2.2.2, along with correct definitions of the functions head, tail, map and from. The user activates the debugger because the incorrect answer $\{N \mapsto$ suc $z, Y \mapsto z\}$ has been computed for the goal head $(\operatorname{tail}(\operatorname{map}($ times $N)($ from $X)))==Y$. The questions asked by the debugger and the answers given by the user are as follows:

Consider the following facts:
1: from $X \rightarrow X$ :suc $X: \perp$
2: map (times (suc z)) (X:suc $X: \perp) \rightarrow \perp: z: \perp$
3: tail $(\perp: z: \perp) \rightarrow z: \perp$
4: head ( $\mathrm{z}: \perp$ ) $\rightarrow \mathrm{z}$
Are all of them valid? ([y]es / [n]o) / [a]bort) n
Enter the number of a non-valid fact followed by a fullstop: 2 .
Consider the following facts:
1: map (times (suc z)) (suc $X: \perp$ ) $\rightarrow \mathrm{z}: \perp$
Are all of them valid? ([y]es / [n]o) / [a]bort) n
Consider the following facts:
1: times (suc $z$ ) (suc $X$ ) $\rightarrow z$
Are all of them valid? ([y]es / [n]o) / [a]bort) n
Consider the following facts:
1: times $z(\operatorname{suc} X) \rightarrow z$
2: plus $z z \rightarrow z$
Are all of them valid? ([y]es / [n]o) / [a]bort) y
Rule number 2 of the function times is wrong.
Wrong instance: times (suc z) (suc $X$ ) $\rightarrow($ plus $($ times $z(\operatorname{suc} X)) z)$

As shown by this example, our current prototype debugger searches the CT top-down, using a strategy whose aim is to avoid redundant questions and to give freedom to the oracle. At any point during the search, the current node contains an invalid statement (initially, this is true because the root of the CT corresponds to an error symptom detected by the user). The debugger builds the list L of the basic facts attached to the children of the current node. If some member of $L$ entails a fact known to be invalid from some previous oracle answer, the debugger moves to the corresponding child and continues with the same strategy. Otherwise, the debugger displays the list $L$ for the oracle's consideration. If the oracle regards all the facts in $L$ as valid, then the current node is buggy, and the debugger shows its associated program rule instance (which can be computed from the CT) as responsible for the bug. Otherwise, the oracle must choose some erroneous fact in the list. The debugger adds this fact to its store of invalid facts, moves to the corresponding child node, and continues with the same strategy.

In the simple example shown above, the entailment relation is not helpful, but in more involved cases it can reduce the number of questions asked to the oracle. Note that the particular search strategy we have described is such that all the answers provided by the oracle are negative, except for the last question. This might not be the case in other alternative strategies, which we have not yet investigated. Our implementation also avoids to ask questions about predefined functions (e.g. arithmetic operations), since they are trusted to be correct. Allowing the user to annotate certain functions to be trusted as correct is a simple albeit useful extension, not yet implemented.

## 6 Conclusions and Future Work

Program transformation is a known approach to the implementation of declarative debugging of wrong answers in lazy FLP languages [22,20,25]. We have given a new, more formal specification of this technique, which avoids type errors related to the use of curried functions and preserves both well-typing and program semantics (as formalized in [9,2]), independently of the narrowing strategy chosen as goal solving mechanism. A prototype implementation of our debugger for the functional logic language $\mathcal{T O Y}$ [14] is available. Our implementation uses a semantically correct algorithm to detect and avoid redundant questions to the oracle, thus reducing the complexity of debugging.

In order to improve the practical usefulness of our results, we have started a cooperation with Herbert Kuchen and Wolfgang Lux, to include a similar debugger as a tool within the Curry [12] implementation developed at Münster University. Hopefully, this will eventually help to evaluate the debugger on practical applications. We also plan to implement and evaluate alternative search strategies for the navigation phase. As more substantial research work,
we plan to investigate and implement extensions of the debugger, to support constraint-based computations as well as the diagnosis of missing answers.

## Acknowledgements

We are grateful to Herbert Kuchen, Paco López and Wolfgang Lux, who have followed our work with interest and provided useful advice. We are also very indebted to Mercedes Abengózar for her great help with implementation work.

## References

[1] M. Alpuente, J. Correa and M. Falaschi. A Debugging Scheme for Functional Logic Programs. Proc. WFLP'2001, Kiel, Germany, September 13-15, 2001.
[2] R. Caballero, F.J. López-Fraguas and M. Rodríguez-Artalejo. Theoretical Foundations for the Declarative Debugging of Lazy Functional Logic Programs. In Proc. FLOPS'01, Springer LNCS 2024, 170-184, 2001.
[3] M. Comini, G. Levi, M.C. Meo and G. Vitello. Abstract Diagnosis. J. of Logic Programming 39, 43-93, 1999.
[4] L. Damas and R. Milner. Principal Type Schemes for Functional Programs. Proc. ACM Symp. on Principles of Programming Languages (POPL'82), ACM Press, pp. 207-212, 1982.
[5] M. Falaschi, G. Levi, M. Martelli and C. Palamidessi. A Model-theoretic Reconstruction of the Operational Semantics of Logic Programs. Information and Computation 102(1). pp. 86-113, 1993.
[6] G. Ferrand. Error Diagnosis in Logic Programming, an Adaptation of E.Y. Shapiro's Method. The Journal of Logic Programming 4(3), 177-198, 1987.
[7] E. Giovannetti, G. Levi, C. Moiso and C.Palamidessi. Kernel-LEAF: A Logic plus Functional Language. Journal of Computer and System Science 42(2), pp. 139-185, 1991.
[8] J.C. González-Moreno, M.T. Hortalá-González, F.J. López-Fraguas and M. Rodríguez-Artalejo. An Approach to Declarative Programming Based on a Rewriting Logic. The Journal of Logic Programming 40(1), pp. 47-87, 1999.
[9] J.C. González-Moreno, M.T. Hortalá-González and M. Rodríguez-Artalejo. Polymorphic Types in Functional Logic Programming. FLOPS'99 special issue of the Journal of Functional and Logic Programming, 2001. See http://danae.uni-muenster.de/lehre/kuchen/JFLP
[10] C.A. Gunter and D. Scott. Semantic Domains. In J.van Leeuwen (ed.), Handbook of Theoretical Computer Science, Elsevier and The MIT Press, Vol. B, Chapter 6, pp. 633-674, 1990.
[11] M. Hanus. The Integration of Functions into Logic Programming: A Survey. J. of Logic Programming 19-20. Special issue "Ten Years of Logic Programming", 583-628, 1994.
[12] M. Hanus (ed.). Curry: An Integrated Functional Logic Language. Version 0.7, February 2, 2000. Available at http://www.informatik.uni-kiel.de/curry/.
[13] J.W. Lloyd. Declarative Error Diagnosis. New Generation Computing 5(2), 133154, 1987.
[14] F.J. López-Fraguas, J. Sánchez-Hernández. $\mathcal{T}$ OY: A Multiparadigm Declarative System. In Proc. RTA'99, Springer LNCS 1631, pp 244-247, 1999. Available at http://titan.sip.ucm.es/toy.
[15] R. Milner. A Theory of Type Polymorphism in Programming. Journal of Computer and Systems Sciences, 17, pp. 348-375, 1978.
[16] B. Möller. On the Algebraic Specification of Infinite Objects - Ordered and Continuous Models of Algebraic Types. Acta Informatica 22, pp. 537-578, 1985.
[17] L. Naish. Declarative Diagnossing of Missing Answers. New Generation Computing, 10, 255-385, 1991.
[18] L. Naish. Declarative Debugging of Lazy Functional Programs. Australian Computer Science Communications, 15(1):287-294, 1993.
[19] L. Naish. A Declarative Debugging Scheme. Journal of Functional and Logic Programming, 1997-3.
[20] L. Naish and T. Barbour. Towards a Portable Lazy Functional Declarative Debugger. Australian Computer Science Communications, 18(1):401-408, 1996.
[21] H. Nilsson, P. Fritzson. Algorithmic Debugging of Lazy Funcional Languages. The Journal of Functional Programming, 4(3):337-370, 1994.
[22] H. Nilsson and J. Sparud. The Evaluation Dependence Tree as a basis for Lazy Functional Debugging. Automated Software Engineering, 4(2):121-150, 1997.
[23] H. Nilsson. Declarative Debugging for Lazy Functional Languages. Ph.D. Thesis. Dissertation No. 530. Univ. Linköping, Sweden. 1998.
[24] S.L. Peyton Jones (ed.), J. Hughes (ed.), L. Augustsson, D. Barton, B. Boutel, W. Burton, J. Fasel, K. Hammond, R. Hinze, P. Hudak, T. Johnsson, M.P. Jones, J. Launchbury, E. Meijer, J. Peterson, A. Reid, C. Runciman and P. Wadler. Report on the programming language Haskell 98: a non-strict, purely functional language. Available at http://www.haskell.org/definition, February 1999.
[25] B. Pope. Buddha. A Declarative Debugger for Haskell. Honours Thesis, Department of Computer Science, University of Melbourne, Australia, June 1998.
[26] E.Y. Shapiro. Algorithmic Program Debugging. The MIT Press, Cambridge, Mass., 1982.
[27] J. Sparud. Tracing and Debuggging Lazy Functional Computations. PhD Thesis. Department of Computer Science, Chalmers Universitity of Technology. Göteborg, Sweden, 1999.
[28] A. Tessier and G. Ferrand. Declarative Diagnosis in the CLP Scheme. In P. Deransart, M. Hermenegildo and J. Małuszynski (Eds.), Analysis and Visualization Tools for Constraint Programming, Chapter 5, pp. 151-174. Springer LNCS 1870, 2000.
[29] P. Wadler. Why no one uses Functional Languages. SIGPLAN Notices 33(8), 23-27, 1998.

## 7 Appendix A: Proofs of the main results

### 7.1 Proofs of Results from Section 2

## Proof of Theorem 2.2

This theorem is also based on some auxiliary lemmata.
Lemma 7.1 For any given Herbrand interpretation $\mathcal{I}$, the analogous of Proposition 2.1 holds for the calculus $S C_{\mathcal{I}}$, i.e.:
(i) For all $t, s \in P a t_{\perp}: t \rightarrow s$ is valid in $\mathcal{I}$ iff $t \sqsupseteq s$.
(ii) For all $e \in \operatorname{Exp}_{\perp}, t, s \in P a t_{\perp}$ : if $e \rightarrow t$ is valid in $\mathcal{I}$ and $t \sqsupseteq s$, then $e \rightarrow s$ is also valid in $\mathcal{I}$.
(iii) For all $e \in \operatorname{Exp}_{\perp}, t \in P a t_{\perp}$ and $\theta, \theta^{\prime} \in S_{\text {Subst }}^{\perp}$ such that $e \theta \rightarrow t$ is valid in $\mathcal{I}$ and $\theta \sqsubseteq \theta^{\prime}$, the statement $e \theta^{\prime} \rightarrow t$ is also valid in $\mathcal{I}$, with a $S C_{\mathcal{I}}$ proof of the same size and structure.
(iv) For all $e \in \operatorname{Exp}_{\perp}, s \in P a t_{\perp}$ such that $e \rightarrow s$ is valid in $\mathcal{I}$, the statement $e \theta \rightarrow s \theta$ is also valid in $\mathcal{I}$ for every total substitution $\theta \in$ Subst.

Proof Idea. This can be proved by straightforward induction on the size of $S C_{\mathcal{I}}$ derivations, similarly to Proposition 2.1.

Lemma 7.2 Assume a Herbrand interpretation $\mathcal{I}$, a partial expression $e \in$ $E x p_{\perp}$ and a partial pattern $t \in P a t_{\perp}$. Then $\llbracket e \rrbracket^{\mathcal{I}} \supseteq \llbracket t \rrbracket^{\mathcal{I}}$ iff $t \in \llbracket e \rrbracket^{\mathcal{I}}$.

Proof. Assume $\llbracket e \rrbracket^{\mathcal{I}} \supseteq \llbracket t \rrbracket^{\mathcal{I}}$. By Lemma 7.1, $t \rightarrow t$ is valid in $\mathcal{I}$. Then $t \in \llbracket t \rrbracket^{\mathcal{I}}$ and therefore $t \in \llbracket e \rrbracket^{\mathcal{I}}$. Conversely, suppose that $t \in \llbracket e \rrbracket^{\mathcal{I}}$. Then $e \rightarrow t$ is valid in $\mathcal{I}$, and for all $s \in \llbracket t \rrbracket^{\mathcal{I}}, t \rightarrow s$ is also valid in $\mathcal{I}$. By Lemma 7.1 it follows that $\mathrm{e} \rightarrow s$ is valid in $\mathcal{I}$ for all $s \in \llbracket t \rrbracket^{\mathcal{I}}$, which means $\llbracket e \rrbracket^{\mathcal{I}} \supseteq \llbracket t \rrbracket^{\mathcal{I}}$.

Lemma 7.3 Let $\mathcal{I}$ a Herbrand interpretation and $f \bar{t}_{n} \rightarrow s$ a basic fact. Then $f \bar{t}_{n} \rightarrow s$ is valid in $\mathcal{I}$ iff $\left(f \bar{t}_{n} \rightarrow s\right) \in \mathcal{I}$.

Proof. If $s=\perp$ the result holds because $f \bar{t}_{n} \rightarrow \perp$ belongs to every Herbrand interpretation and $f \bar{t}_{n} \rightarrow \perp$ is valid in $\mathcal{I}$ due to the $S C_{\mathcal{I}}$ rule $B T$. In the rest of the proof we assume that $s$ is not $\perp$.
If $\left(f \bar{t}_{n} \rightarrow s\right) \in \mathcal{I}$ then $f \bar{t}_{n} \rightarrow s$ is valid in $\mathcal{I}$, as witnessed by the following $S C_{\mathcal{I}}$ derivation, ending with a $F A_{\mathcal{I}}$ step:

$$
\frac{t_{1} \rightarrow t_{1} \ldots t_{n} \rightarrow t_{n} \quad s \rightarrow s}{f \bar{t}_{n} \rightarrow s}\left(f \bar{t}_{n} \rightarrow s\right) \in \mathcal{I}
$$

The derivation can be completed because Lemma 7.1 ensures that all the premises $t_{i} \rightarrow t_{i}$ and $s \rightarrow s$ are valid in $\mathcal{I}$.
Conversely, if $f \bar{t}_{n} \rightarrow s$ is valid in $\mathcal{I}$, there is a $S C_{\mathcal{I}}$ proof of $f \bar{t}_{n} \rightarrow s$, which
must end with a $F A_{\mathcal{I}}$ step and have the following form:

$$
\frac{t_{1} \rightarrow t_{1}^{\prime} \ldots t_{n} \rightarrow t_{n}^{\prime} \quad s^{\prime} \rightarrow s}{f \bar{t}_{n} \rightarrow s}\left(f \bar{t}_{n} \rightarrow s^{\prime}\right) \in \mathcal{I}
$$

By Lemma 7.1 we can conclude that $t_{1}^{\prime} \sqsubseteq t_{1}, \ldots, t_{n}^{\prime} \sqsubseteq t_{n}$ and $s \sqsubseteq s^{\prime}$. Since $\left(f \overline{t^{\prime}}{ }_{n} \rightarrow s^{\prime}\right) \in \mathcal{I}$, item (ii) from the definition of Herbrand interpretation in Section 2.3.4 implies $\left(f \bar{t}_{n} \rightarrow s\right) \in \mathcal{I}$.

Lemma 7.4 Let $P$ any program and $\mathcal{M}_{P}=\left\{f \bar{t}_{n} \rightarrow s \mid P \vdash_{S C} f \bar{t}_{n} \rightarrow s\right\}$. Then $\mathcal{M}_{P}$ is a Herbrand interpretation.

Proof. $M_{P}$ must satisfy the three conditions of Herbrand interpretations:
(i) $\left(f \bar{t}_{n} \rightarrow \perp\right) \in \mathcal{M}_{P}$.

This property holds since $f \bar{t}_{n} \rightarrow \perp$ can be proved in $S C$ by means of the $B T$ rule.
(ii) If $\left(f \bar{t}_{n} \rightarrow s\right) \in \mathcal{M}_{P}, t_{i} \sqsubseteq t_{i}^{\prime}, s \sqsupseteq s^{\prime}$ then $\left(f \bar{t}_{n} \rightarrow s^{\prime}\right) \in \mathcal{M}_{P}$. This follows immediately from the definition of $\mathcal{M}_{P}$ and Proposition 2.1.
(iii) If $\left(f \bar{t}_{n} \rightarrow s\right) \in \mathcal{M}_{P}$ and $\theta \in S u b s t$ is a total substitution, then $\left(f \bar{t}_{n} \rightarrow s\right) \theta \in \mathcal{M}_{P}$. This is also a straigthforward consequence of Proposition 2.1 and the construction of $\mathcal{M}_{P}$.

We are now ready to prove claims (a), (c) and (b) of Theorem 2.2, in this order.
(a) Let $\varphi$ be a statement such that $P \vdash_{S C} \varphi$ and assume that $\mathcal{I}$ is a Herbrand model of $P$. Let $T$ be the proof tree of $\varphi$ in $S C$. We will build a proof tree $T^{\prime}$ of $\varphi$ in $S C_{\mathcal{I}}$, showing that $\varphi$ is valid in $\mathcal{I}$. This is done by using induction on the depth of $T$.

Basis: $(\operatorname{depth}(\mathrm{T})=0)$. Then $\varphi$ is the only node of $T$ and corresponds either to a $B T, D C$ or to a $R R$ inference. Since these rules are also present in $S C_{\mathcal{I}}$ we can take $T^{\prime}=T$.

Inductive step: $(\operatorname{depth}(\mathrm{T})=n, n>0)$. We distinguish different cases depending on the $S C$ rule applied at the root of $T$.

DC: In this case $\varphi$ must have the form $h \bar{e}_{m} \rightarrow h \bar{t}_{m}$ and the inference step at the root of $T$ must be:

$$
\frac{e_{1} \rightarrow t_{1} \ldots e_{m} \rightarrow t_{m}}{h \bar{e}_{m} \rightarrow h \bar{t}_{m}}
$$

Since rule $D C$ also exists in $S C_{\mathcal{I}}$ we can build $T^{\prime}$ with the same root as $T$ and with the same children at the root. Moreover by the induction hypothesis the $e_{i} \rightarrow t_{i}$ are valid in $\mathcal{I}$ and therefore there exist proof trees in $S C_{\mathcal{I}}$ that
will complete the construction of $T^{\prime}$.
$\mathbf{J N}$ : In this case $\varphi$ has the form $e==e^{\prime}$ and the inference step at the root of $T$ must be:

$$
\begin{gathered}
e \rightarrow t \quad e^{\prime} \rightarrow t \\
e==e^{\prime}
\end{gathered}
$$

where $t$ is a total pattern. Since rule $J N$ also exists in $S C_{\mathcal{I}}$ we can build $T^{\prime}$ with the same root as $T$ and with the same children at the root. Morover by the induction hypothesis the $e \rightarrow t, e^{\prime} \rightarrow t$ are valid in $\mathcal{I}$ and therefore there exist proof trees in $S C_{\mathcal{I}}$ that will complete the construction of $T^{\prime}$.
$\mathbf{A R}+\mathbf{F A}:$ In this case $\varphi$ has the form $f \bar{e}_{n} \bar{a}_{m} \rightarrow t$ and the $S C$ inference at the root of $T$ must be:

$$
\frac{e_{1} \rightarrow t_{1} \ldots e_{n} \rightarrow t_{n} \stackrel{C r \rightarrow s}{\sqrt{f \bar{t}_{n} \rightarrow s}}}{f \bar{e}_{n} \bar{a}_{m} \rightarrow t}
$$

Then we build $T^{\prime}$ by using rule $F A_{\mathcal{I}}$ at the root:

$$
\frac{e_{1} \rightarrow t_{1} \ldots e_{n} \rightarrow t_{n} \quad s \bar{a}_{m} \rightarrow t}{f \bar{e}_{n} \bar{a}_{m} \rightarrow t}\left(f \bar{t}_{n} \rightarrow s\right) \in \mathcal{I}
$$

and completing the proof tree by means of $S C_{\mathcal{I}}$ proof trees for the statements $e_{i} \rightarrow t_{i}$ and $s \bar{a}_{m} \rightarrow t$, which exist by induction hypothesis, since all these statements have proof trees of depth less than $n$ in $S C$. However, we still have to check that the conditions required by $F A_{\mathcal{I}}$ are satisfied. First $t$ is actually a pattern different from $\perp$ because this condition is also required by rule $A R+F A$. To see that $f \bar{t}_{n} \rightarrow s$ is in $\mathcal{I}$ we observe that $f t_{1} \ldots t_{n} \rightarrow t \Leftarrow C$ is an instance of some rewrite rule belonging to $P$. Moreover, $\mathcal{I}$ satisfies $C$ by induction hypothesis. Since $\mathcal{I}$ is a model of $P$, we can conclude that $\llbracket f t_{1} \ldots t_{n} \rrbracket^{\mathcal{I}} \supseteq \llbracket r \rrbracket^{\mathcal{I}}$. By induction hypothesis we also know that $r \rightarrow s$ is valid in $\mathcal{I}$. It follows that $s \in \llbracket r \rrbracket^{\mathcal{I}} \subseteq \llbracket f t_{1} \ldots t_{n} \rrbracket^{\mathcal{I}}$ and hence $s \in \llbracket f t_{1} \ldots t_{n} \rrbracket^{\mathcal{I}}$, as we needed.
(c) $\mathcal{M}_{P}$ is an Herbrand interpretation as shown in Lemma 7.4. Assume that $\varphi$ is valid in $\mathcal{M}_{P}$ with proof tree $T$ in $S C_{\mathcal{M}_{P}}$. Then we show by induction on $\operatorname{depth}(T)$ that we can build a proof tree $T^{\prime}$ for $\varphi$ in $S C$.
Basis (depth $(T)=0$ ). The only possible inferences applied at the root of $T$ are $B T, R R$ or $D C$. Since these 3 rules belong also to $S C$ we can take $T^{\prime}=T$.

Inductive Step $(\operatorname{depth}(T)=n, n>0)$. Then either $D C, J N$ or $F A_{\mathcal{M}_{P}}$ has been applied at the root of $T$. In the $D C$ and $J N$ cases, the same inference
can be applied at the root of $T^{\prime}$ and by induction hypothesis $S C$ proof trees $T_{i}$ exist all the children. This completes the desired proof tree $T^{\prime}$.

In the $F A_{\mathcal{M}_{P}}$ case the root inference of $T$ has the form

$$
\frac{e_{1} \rightarrow t_{1} \ldots e_{n} \rightarrow t_{n} \quad s \bar{a}_{m} \rightarrow t}{f \bar{e}_{n} \bar{a}_{m} \rightarrow t} t \text { pattern, } t \neq \perp,\left(f \bar{t}_{n} \rightarrow s\right) \in \mathcal{M}_{P}
$$

Since $\left(f \bar{t}_{n} \rightarrow s\right) \in \mathcal{M}_{P}$, then there exists a $S C$ proof tree for $f \bar{t}_{n} \rightarrow s$. Such a proof tree must have a $A R+F A$ inference at the root:

$$
\frac{t_{1} \rightarrow t_{1}^{\prime} \ldots t_{n} \rightarrow t_{n}^{\prime} \frac{C r \rightarrow s}{f \bar{t}_{n}^{\prime} \rightarrow s}}{f \bar{t}_{n} \rightarrow s}\left(f \bar{t}_{n}^{\prime} \rightarrow r \Leftarrow C\right) \in[P]_{\perp}, s \text { pattern, } s \neq \perp
$$

Hence, the statements $t_{i} \rightarrow t_{i}^{\prime}, C$ and $r \rightarrow s$ have proof trees in $S C$. Then the tree $T^{\prime}$ is built by using a $F A$ inference at the root:

To complete $T^{\prime}$ we only need to show that the statements $e_{i} \rightarrow t_{i}^{\prime}$ have $S C$ proofs. This follows easily from Proposition 2.1, since each $e_{i} \rightarrow t_{i}$ has a $S C$ proof by induction hypothesis, and $t_{i} \rightarrow t_{i}^{\prime}$ have also $S C$ proofs.
(b) The fact that $\mathcal{M}_{P}$ is included in any Herbrand model of $P$ follows from Lemma 7.3, the construction of $\mathcal{M}_{P}$ and item (a) of this theorem. Moreover, we already know by Lemma 7.4 that $\mathcal{M}_{P}$ is a Herbrand interpretation. In order to show that $\mathcal{M}_{P}$ is a model of $P$, we must prove that $\mathcal{M}_{P}$ satisfies every program rule instance $\left(f \bar{t}_{n} \rightarrow r \Leftarrow C\right) \in[P]_{\perp}$. This is trivially true if $\mathcal{M}_{P}$ does not satisfy $C$. Assuming that $\mathcal{M}_{P}$ does satisfy $C$, we have to prove that $\llbracket r \rrbracket^{\mathcal{M}_{P}} \subseteq \llbracket f \bar{t}_{n} \rrbracket^{\mathcal{M}_{P}}$. This means that any $t \in P a t_{\perp}$ such that $r \rightarrow t$ is valid in $\mathcal{M}_{P}$ must verify that $f \bar{t}_{n} \rightarrow t$ is also valid in $\mathcal{M}_{P}$. By item (c) of this theorem and the construction of $\mathcal{M}_{P}$, it suffices to prove that $P \vdash_{S C} f \bar{t}_{n} \rightarrow t$ under the assumption that $P \vdash_{S C} r \rightarrow t$. If $t=\perp$ this is trivially true. Otherwise we build the following $S C$ proof tree with an $A R+F A$ inference at the root:

$$
\frac{t_{1} \rightarrow t_{1} \ldots t_{n} \rightarrow t_{n} \stackrel{C r \rightarrow t}{\sqrt{t_{n} \rightarrow t}}}{f \bar{t}_{n} \rightarrow t} f \bar{t}_{n} \rightarrow r \Leftarrow C \in[P]_{\perp}, t \neq \perp
$$

Note that this proof tree can be completed, since:

- $P \vdash_{S C} t_{i} \rightarrow t_{i}$ holds by Proposition 2.1.
- Each statement $\varphi^{\prime}$ in $C$ is valid in $\mathcal{M}_{P}$, and thus fulfils $P \vdash_{S C} \varphi^{\prime}$, by item (c) of this theorem.
- $P \vdash_{S C} r \rightarrow t$ is assumed to hold.


### 7.2 Proofs of Results from Section 4

## Proof of Theorem 4.2

In what follows, we use the following notations:

- $\Sigma^{\mathcal{T}}$ stands for a transformed signature, defined as explained in Section 4.2
- $T^{\mathcal{T}}$ stands for a transformed type environment, defined by the condition $T^{\mathcal{T}}(X)=T(X)^{\mathcal{T}}$ for all $X \in \operatorname{Var}$.
- $\theta^{\mathcal{T}}$ stands for a transformed type substitution, defined by the condition $\theta^{\mathcal{T}}(\alpha)=\theta(\alpha)^{\mathcal{T}}$ for all $\alpha \in$ TVar.

Now we present some auxiliary lemmata.
Lemma 7.5 Let $T^{\mathcal{T}}$ be a type environment and $a_{1}^{\mathcal{T}} \ldots a_{k}^{\mathcal{T}}, b^{\mathcal{T}}$ expressions such that

1) $\left(\Sigma^{\mathcal{T}}, T^{\mathcal{T}}\right) \vdash_{W T} b^{\mathcal{T}}::\left(\tau_{1} \rightarrow \ldots \rightarrow \tau_{k} \rightarrow \tau\right)^{\mathcal{T}}$
2) $\left(\Sigma^{\mathcal{T}}, T^{\mathcal{T}}\right) \vdash_{W T} a_{i}^{\mathcal{T}}:: \tau_{i}^{\mathcal{T}}$ for every $i=1, \ldots, k$.

Then $\left(\Sigma^{\mathcal{T}}, T^{\mathcal{T}}\right) \vdash_{W T}\left(\ldots\left(\left(b^{\mathcal{T}} @ a_{1}^{\mathcal{T}}\right) @ a_{2}^{\mathcal{T}}\right) \ldots\right) @ a_{k}^{\mathcal{T}}:: \tau^{\mathcal{T}}$.

## Proof

Induction on $k \geq 0$.
Basis: $k=0$. Then $\left(\Sigma^{\mathcal{T}}, T^{\mathcal{T}}\right) \vdash_{W T} b^{\mathcal{T}}:: \tau^{\mathcal{T}}$, and the result holds.
Inductive Case: $k>0$. Let $e=\left(\ldots\left(\left(b^{\mathcal{T}} @ a_{1}^{\mathcal{T}}\right) @ a_{2}^{\mathcal{T}}\right) \ldots\right) @ a_{k-1}^{\mathcal{T}}$. By I.H.:

$$
\left(\Sigma^{\mathcal{T}}, T^{\mathcal{T}}\right) \vdash_{W T} e::\left(\tau_{k} \rightarrow \tau\right)^{\mathcal{T}}=\tau_{k}^{\mathcal{T}} \rightarrow\left(\tau^{\mathcal{T}}, c \text { Tree }\right)
$$

Now, since @ :: $(\alpha \rightarrow(\beta, c$ Tree $)) \rightarrow \alpha \rightarrow \beta$, it is clear that $\left(\Sigma^{\mathcal{T}}, T^{\mathcal{T}}\right) \vdash_{W T}$ $e @ a_{k}^{\mathcal{T}}:: \tau^{\mathcal{T}}$.

Lemma 7.6 For any type $\tau$ and any type substitution $\theta: \tau^{\mathcal{T}} \theta^{\mathcal{T}}=(\tau \theta)^{\mathcal{T}}$.

## Proof

Induction on the structure of $\tau$.
Basis: $\tau=\alpha \in$ TVar. Then $\alpha^{\mathcal{T}} \theta^{\mathcal{T}}=\alpha \theta^{\mathcal{T}}=(\alpha \theta)^{\mathcal{T}}$ (by def. of $\theta^{\mathcal{T}}$ ).
Inductive Case. Two possibilities:
(a) $\tau=c \tau_{1} \ldots \tau_{n}$, for some $c \in D C^{n}$. Then:

$$
\begin{array}{ll}
\left(c \tau_{1} \ldots \tau_{n}\right)^{\mathcal{T}} \theta^{\mathcal{T}} & = \\
\left(c \tau_{1}^{\mathcal{T}} \ldots \tau_{n}^{\mathcal{T}}\right) \theta^{\mathcal{T}} & = \\
c\left(\tau_{1}^{\mathcal{T}} \theta^{\mathcal{T}}\right) \ldots\left(\tau_{n}^{\mathcal{T}} \theta^{\mathcal{T}}\right)= & \text { (by I.H.) } \\
c\left(\tau_{1} \theta\right)^{\mathcal{T}} \ldots\left(\tau_{n} \theta\right)^{\mathcal{T}} & = \\
\left(c\left(\tau_{1} \theta\right) \ldots\left(\tau_{n} \theta\right)\right)^{\mathcal{T}} & = \\
\left(\left(c \tau_{1} \ldots \tau_{n}\right) \theta\right)^{\mathcal{T}} &
\end{array}
$$

(b) $\tau=\mu \rightarrow \nu$

$$
\begin{array}{ll}
(\mu \rightarrow \nu) \theta^{\mathcal{T}} & = \\
\left(\mu^{\mathcal{T}} \rightarrow\left(\nu^{\mathcal{T}}, c \text { Treee }\right)\right) \theta^{\mathcal{T}} & = \\
\mu^{\mathcal{T}} \theta^{\mathcal{T}} \rightarrow\left(\nu^{\mathcal{T}} \theta^{\mathcal{T}}, c \text { Tree }\right) & =(\text { by I.H. }) \\
(\mu \theta)^{\mathcal{T}} \rightarrow\left((\nu \theta)^{\mathcal{T}}, c \text { Tree }\right) & = \\
(\mu \theta \rightarrow \nu \theta)^{\mathcal{T}} & = \\
((\mu \rightarrow \nu) \theta)^{\mathcal{T}} &
\end{array}
$$

Lemma 7.7 The expression transformation $e \mapsto e^{\mathcal{T}}$ defined in Section 4.4 transforms any well typed expression $(\Sigma, T) \vdash_{W T} e:: \tau$ into a well typed expression $\left(\Sigma^{\mathcal{T}}, T^{\mathcal{T}}\right) \vdash_{W T} e^{\mathcal{T}}:: \tau^{\mathcal{T}}$.

## Proof

We distinguish the same six cases as in the definition of $e^{\mathcal{T}}$ given in Section 4.4.

1. $e=X a_{1} \ldots a_{k}, X \in \operatorname{Var}, k \geq 0$.

In this case, $e^{\mathcal{T}}=\left(\ldots\left(\left(X @ a_{1}^{\mathcal{T}}\right) @ a_{2}^{\mathcal{T}}\right) \ldots\right) @ a_{k}^{\mathcal{T}}$. Since $(\Sigma, T) \vdash_{W T} e:: \tau$, $(\Sigma, T) \vdash_{W T} a_{i}:: \tau_{i}, 0 \leq i \leq k$ and $T(X)=\tau_{1} \rightarrow \ldots \rightarrow \tau_{k} \rightarrow \tau$. By I.H. $\left(\Sigma^{\mathcal{T}}, T^{\mathcal{T}}\right) \vdash_{W T} a_{i}^{\mathcal{T}}:: \tau_{i}^{\mathcal{T}}, 0 \leq i \leq k$. Applying Lemma 7.5 with $b^{\mathcal{T}}=X$ the result $\left(\Sigma^{\mathcal{T}}, T^{\mathcal{T}}\right) \vdash_{W T} e^{\mathcal{T}}:: \tau^{\mathcal{T}}$ is obtained.
2. $e=c e_{1} \ldots e_{m}\left(c \in D C^{n}, m<n, n>0\right)$.

Assume that the principal type of $c$ in $\Sigma$ is $c:: \mu_{1} \rightarrow \ldots \rightarrow \mu_{n} \rightarrow \mu$. Since $(\Sigma, T) \vdash_{W T} e:: \tau$, there must be some $\theta \in T$ Subst such that

$$
(\Sigma, T) \vdash_{W T} e_{i}:: \mu_{i} \theta(1 \leq i \leq m), \quad \tau=\left(\mu_{m+1} \rightarrow \ldots \rightarrow \mu_{n} \rightarrow \mu\right) \theta
$$

By I.H. and Lemma 7.6 we obtain

$$
\left(\Sigma^{\mathcal{T}}, T^{\mathcal{T}}\right) \vdash_{W T} e_{i}^{\mathcal{T}}:: \mu_{i}^{\mathcal{T}} \theta^{\mathcal{T}}(1 \leq i \leq m)
$$

On the other hand, $e^{\mathcal{T}}=c_{m}^{\mathcal{T}} e_{1}^{\mathcal{T}} \ldots e_{m}^{\mathcal{T}}$ and the principle type of $c_{m}^{\mathcal{T}}$ in $\Sigma^{\mathcal{T}}$ is

$$
c_{m}^{\mathcal{T}}:: \mu_{1}^{\mathcal{T}} \rightarrow \ldots \rightarrow \mu_{m+1}^{\mathcal{T}} \rightarrow\left(\left(\mu_{m+2} \rightarrow \ldots \rightarrow \mu_{n} \rightarrow \mu\right)^{\mathcal{T}}, c \text { Tree }\right)
$$

Therefore, we can deduce:

$$
\left(\Sigma^{\mathcal{T}}, T^{\mathcal{T}}\right) \vdash_{W T} e^{\mathcal{T}}:: \mu_{m+1}^{\mathcal{T}} \theta^{\mathcal{T}} \rightarrow\left(\left(\mu_{m+2} \rightarrow \ldots \rightarrow \mu_{m} \rightarrow \mu\right)^{\mathcal{T}} \theta^{\mathcal{T}}, \text { cTree }\right)
$$

which is the same as $\left(\Sigma^{\mathcal{T}}, T^{\mathcal{T}}\right) \vdash_{W T} e^{\mathcal{T}}:: \tau^{\mathcal{T}}$, because

$$
\begin{array}{ll}
\tau^{\mathcal{T}} & = \\
\left(\left(\mu_{m+1} \rightarrow \ldots \rightarrow \mu\right) \theta\right)^{\mathcal{T}} & =\text { Lemma } 7.6 \\
\left(\mu_{m+1} \rightarrow \ldots \rightarrow \mu\right)^{\mathcal{T}} \theta^{\mathcal{T}} & = \\
\left(\mu_{m+1}^{\mathcal{T}} \rightarrow\left(\left(\mu_{m+2} \rightarrow \ldots \rightarrow \mu_{n}\right)^{\mathcal{T}}, \text { cTree }\right)\right) \theta^{\mathcal{T}} & = \\
\mu_{m+1}^{\mathcal{T}} \theta^{\mathcal{T}} \rightarrow\left(\left(\mu_{m+2} \rightarrow \ldots \rightarrow \mu_{n}\right)^{\mathcal{T}} \theta^{\mathcal{T}}, \text { cTree }\right) &
\end{array}
$$

3. $e=c e_{1} \ldots e_{n}\left(c \in D C^{n}, n \geq 0\right)$.

Assume that the principal type of $c$ in $\Sigma$ is as in case 2.
Since $(\Sigma, T) \vdash_{W T}$ e $:: \tau$, there must be some $\theta \in$ TSubst such that

$$
(\Sigma, T) \vdash_{W T} e_{i}:: \mu_{i} \theta(1 \leq i \leq n), \quad \tau=\mu \theta
$$

By I.H. and Lemma 7.6 we obtain

$$
\left(\Sigma^{\mathcal{T}}, T^{\mathcal{T}}\right) \vdash_{W T} e_{i}^{\mathcal{T}}:: \mu_{i}^{\mathcal{T}} \theta^{\mathcal{T}}(1 \leq i \leq n)
$$

Since the $\mu_{i}$ are the principal types of a data constructor's arguments they must be datatypes, so that $\mu_{i}^{\mathcal{T}}=\mu_{i}$. Moreover $e^{\mathcal{T}}=c e_{1}^{\mathcal{T}} \ldots e_{n}^{\mathcal{T}}$, and the principal type declaration of $c$ in $\Sigma^{\mathcal{T}}$ is the same as in $\Sigma$. Therefore we can deduce $\left(\Sigma^{\mathcal{T}}, T^{\mathcal{T}}\right) \vdash_{W T} e:: \mu \theta^{\mathcal{T}}$. Since $\mu$ is also a datatype, Lemma 7.6 ensures that $\mu \theta^{\mathcal{T}}=\mu^{\mathcal{T}} \theta^{\mathcal{T}}=(\mu \theta)^{\mathcal{T}}=\tau^{\mathcal{T}}$ and we are ready.
4. $e=f a_{1} \ldots a_{k}\left(f \in F S^{0}, k \geq 0\right)$.

In this case

$$
e^{\mathcal{T}}=\left(\ldots\left(\left(\left(@_{0} f^{\mathcal{T}}\right) @ a_{1}^{\mathcal{T}}\right) @ a_{2}^{\mathcal{T}}\right) @ \ldots\right) @ a_{k}^{\mathcal{T}}
$$

Assume that the principal types of $f$ and $f^{\mathcal{T}}$ in their respective signatures are $f:: \mu$ and $f^{\mathcal{T}}::\left(\mu^{\mathcal{T}}, c\right.$ Tree $)$. Since $(\Sigma, T) \vdash_{W T} e:: \tau$, there must be some $\theta \in T$ Subst such that

$$
\mu \theta=\tau_{1} \rightarrow \ldots \tau_{k} \rightarrow \tau, \quad(\Sigma, T) \vdash_{W T} a_{i}:: \tau_{i}, \quad(1 \leq i \leq k)
$$

By I.H. we can obtain: $\left(\Sigma^{\mathcal{T}}, T^{\mathcal{T}}\right) \vdash_{W T} a_{i}^{\mathcal{T}}:: \tau_{i}^{\mathcal{T}}$. Moreover, using principal types $f^{\mathcal{T}}::\left(\mu^{\mathcal{T}}, c\right.$ Tree $)$ and $@_{0}::(\beta, c$ Tree $) \rightarrow \beta$ it is easy to deduce:

$$
\left(\Sigma^{\mathcal{T}}, T^{\mathcal{T}}\right) \vdash_{W T} @_{0} f^{\mathcal{T}}:: \mu^{\mathcal{T}} \theta^{\mathcal{T}}=(\mu \theta)^{\mathcal{T}}
$$

where the last equality holds by Lemma 7.6. Now:

$$
(\mu \theta)^{\mathcal{T}}=\left(\tau_{1} \rightarrow \ldots \rightarrow \tau_{k} \rightarrow \tau\right)^{\mathcal{T}}
$$

and Lemma 7.5 can be applied (with $b=f$ ) to obtain

$$
(\Sigma, T) \vdash_{W T}\left(\ldots\left(\left(\left(@_{0} f^{\mathcal{T}}\right) @ a_{1}^{\mathcal{T}}\right) @ a_{2}^{\mathcal{T}}\right) @ \ldots\right) @ a_{k}^{\mathcal{T}}:: \tau^{\mathcal{T}}
$$

which is the same as $(\Sigma, T) \vdash_{W T} e^{T}:: \tau^{T}$.
5. $e=f e_{1} \ldots e_{m}\left(f \in F S^{n}, n>0, m<n-1\right)$.

Analogous to case 2.
6. $e=f e_{1} \ldots e_{n-1} a_{1} \ldots a_{k}\left(f \in F S^{n}, n>0, k \geq 0\right)$.

In this case

$$
\left.e^{\mathcal{T}}=\left(\ldots\left(\left(f^{\mathcal{T}} e_{1}^{\mathcal{T}} \ldots e_{n-1}^{\mathcal{T}}\right) @ a_{1}^{\mathcal{T}}\right) @ a_{2}^{\mathcal{T}}\right) @ \ldots\right) @ a_{k}^{\mathcal{T}}
$$

The principal types of $f$ and $f^{\mathcal{T}}$ in their respective signatures must be of the form

$$
f:: \mu_{1} \rightarrow \ldots \rightarrow \mu_{n} \rightarrow \mu, \quad f^{\mathcal{T}}:: \mu_{1}^{\mathcal{T}} \rightarrow \ldots \rightarrow \mu_{n}^{\mathcal{T}} \rightarrow\left(\mu^{\mathcal{T}}, c \text { cTree }\right)
$$

Since $(\Sigma, T) \vdash_{W T} e:: \tau$, there must be some $\theta \in T$ Subst such that

$$
\left(\mu_{1} \rightarrow \ldots \rightarrow \mu_{n} \rightarrow \mu\right) \theta=\tau_{1} \rightarrow \ldots \rightarrow \tau_{n-1} \rightarrow \nu_{1} \rightarrow \ldots \rightarrow \nu_{k} \rightarrow \tau
$$

with

$$
(\Sigma, T) \vdash_{W T} e_{i}:: \tau_{i}(1 \leq i \leq n-1), \quad(\Sigma, T) \vdash_{W T} a_{j}:: \nu_{j}(1 \leq j \leq k)
$$

By I.H. we obtain:
$\left(\Sigma^{\mathcal{T}}, T^{\mathcal{T}}\right) \vdash_{W T} e_{i}^{\mathcal{T}}:: \tau_{i}^{\mathcal{T}}(1 \leq i \leq n-1), \quad\left(\Sigma^{\mathcal{T}}, T^{\mathcal{T}}\right) \vdash_{W T} a_{j}^{\mathcal{T}}:: \nu_{j}^{\mathcal{T}}(1 \leq j \leq k)$
Using the principal type of $f^{\mathcal{T}}$ in $\Sigma^{\mathcal{T}}$ as well as Lemma 7.6 we can deduce:

$$
\begin{aligned}
\left(\Sigma^{\mathcal{T}}, T^{\mathcal{T}}\right) \vdash_{W T} f^{\mathcal{T}} e_{1}^{\mathcal{T}} \ldots e_{n-1}^{\mathcal{T}}:: & \mu_{n}^{\mathcal{T}} \theta^{\mathcal{T}} \rightarrow\left(\mu^{\mathcal{T}} \theta^{\mathcal{T}}, c \text { Tree }\right)=\text { Lemma } 7.6 \\
& \mu_{n} \theta^{\mathcal{T}} \rightarrow\left(\mu \theta^{\mathcal{T}}, c \text { Tree }\right)= \\
& \left(\left(\mu_{n} \rightarrow \mu\right) \theta\right)^{\mathcal{T}}= \\
& \left(\nu_{1} \rightarrow \ldots \rightarrow \nu_{k} \rightarrow \nu\right)^{\mathcal{T}}
\end{aligned}
$$

Now we can apply Lemma 7.5 to obtain

$$
\left.\left(\Sigma^{\mathcal{T}}, T^{\mathcal{T}}\right) \vdash_{W T}\left(\ldots\left(\left(f^{\mathcal{T}} e_{1}^{\mathcal{T}} \ldots e_{n-1}^{\mathcal{T}}\right) @ a_{1}^{\mathcal{T}}\right) @ a_{2}^{\mathcal{T}}\right) @ \ldots\right) @ a_{k}^{\mathcal{T}}:: \tau^{\mathcal{T}}
$$

which is the same as $\left(\Sigma^{\mathcal{T}}, T^{\mathcal{T}}\right) \vdash_{W T} e^{\mathcal{T}}:: \tau^{\mathcal{T}}$.

Lemma 7.8 Any simple application of the transformation rules $A P_{0}$ or $A P_{1}$ defined in Section 4.4 preservers well-typing. More precisely: if a partially transformed program rule is well-typed w.r.t. a type environment $T_{i}^{\mathcal{T}}$, then the new program rule obtained by one single application of $A P_{0}$ or $A P_{1}$ is also well-typed w.r.t. some type environment $T_{i+1}^{\mathcal{T}}$ with type assumptions for some new variables.

## Proof.

Both transformation rules $A P_{0}, A P_{1}$ transform only the part of the rule corresponding to the local declarations, and hence we only need to check that this part is well-typed.

- Rule $A P_{0}$ transforms
$\left\{\ldots ; p \leftarrow e\left[@_{0}\right.\right.$ fun $] ; \ldots T \leftarrow$ cNode.... (clean lp $\left.)\right\}$ into $\left\{\ldots ;\left(R^{\prime}, T^{\prime}\right) \leftarrow\right.$ fun $; p \leftarrow e\left[R^{\prime}\right] ; \ldots T \leftarrow$ cNode $\ldots\left(\right.$ clean $\left(\right.$ lp $\left.\left.\left.++\left[\left(\mathrm{dVal} R^{\prime}, T^{\prime}\right)\right]\right)\right)\right\}$ There must exist a type environment $T_{i}^{\mathcal{T}}$ such that:
(1) $\left(\Sigma^{\mathcal{T}}, T_{i}^{\mathcal{T}}\right) \vdash_{W T} p:: \tau:: e\left[@_{0}\right.$ fun $]$, with $\tau^{\prime}$ the type used for $\left(@_{0}\right.$ fun) in the proof.
(2) $\left(\Sigma^{\mathcal{T}}, T_{i}^{\mathcal{T}}\right) \vdash_{W T} T:: c$ Tree $::\left(\right.$ cNode... $\left(\right.$ clean $\left.\left(l p++\left[\left(\mathrm{dVal} R^{\prime}, T^{\prime}\right)\right]\right)\right)$, with $[(p$ Val, $c$ Tree $)]$ the type used for $l p$ in the proof.
Then we define $T_{i+1}^{\mathcal{T}}$ by extending $T_{i}^{\mathcal{T}}$ with suitable types for the new variables $R^{\prime}$ and $T^{\prime}$ :

$$
T_{i+1}^{\mathcal{T}}=T_{i}^{\mathcal{T}} \oplus\left\{R^{\prime}:: \tau^{\prime}, T^{\prime}:: c \text { Tree }\right\}
$$

Since $\tau^{\prime}$ is the type of $\left(@_{0}\right.$ fun $)$ in (1), then:

$$
\left(\Sigma^{\mathcal{T}}, T_{i}^{\mathcal{T}}\right) \vdash_{W T} @_{0}::\left(\tau^{\prime}, c \text { Tree }\right) \rightarrow \tau^{\prime}, \quad\left(\Sigma^{\mathcal{T}}, T_{i}^{\mathcal{T}}\right) \vdash_{W T} \text { fun }::\left(\tau^{\prime}, c \text { Tree }\right)
$$

Then obviously

$$
\left(\Sigma^{\mathcal{T}}, T_{i+1}\right) \vdash_{W T}\left(R^{\prime}, T^{\prime}\right)::\left(\tau^{\prime}, c \text { Tree }\right):: \text { fun, }\left(\Sigma^{\mathcal{T}}, T_{i+1}\right) \vdash_{W T} p:: \tau:: e\left[R^{\prime}\right]
$$

Finally, since $d V a l:: A \rightarrow p V a l,(+)::[A] \rightarrow[A] \rightarrow[A] \in \Sigma^{\mathcal{T}}$, and using the types for $T, l p$ in (2)

$$
\left.\left(\Sigma^{\mathcal{T}}, T_{i+1}\right) \vdash_{W T}\left(l p++\left[\left(\mathrm{dVal} R^{\prime}, T^{\prime}\right)\right]\right)\right)::[(p \text { Val, cTree })]
$$

and hence:

$$
\left(\Sigma^{\mathcal{T}}, T_{i+1}\right) \vdash_{W T}\left(\text { cNode } \ldots\left(\text { clean }\left(l p++\left[\left(\mathrm{dVal} R^{\prime}, T^{\prime}\right)\right]\right)\right)\right):: \text { cTree }
$$

as expected.

- Rule $A P_{1}$ : The proof is very similar to the case of rule $A P_{0}$.

Now we are ready to prove Theorem 4.2:
In $P^{\mathcal{T}}$ there are new functions such as clean, dVal , functions for partial applications and constructors, as well as functions coming from the transformation of functions in $P$ (see Section 4.4. We must prove that all these of functions are well-typed.

- Function dVa a is a primitive and therefore we only can assume that it is welltyped. Checking that clean is well-typed is straightforward from its definition.
- Auxiliary functions $f_{0}^{\mathcal{T}}, \ldots, f_{n-2}^{\mathcal{T}}$ for $f \in F S^{n}$. Two cases:
(1) $f_{m}^{\mathcal{T}}, m<n-2$

The only rule for

$$
f_{m}^{\mathcal{T}}:: \tau_{1}^{\mathcal{T}} \rightarrow \ldots \rightarrow \tau_{m+1}^{\mathcal{T}} \rightarrow\left(\left(\tau_{m+2} \rightarrow \ldots \rightarrow \tau_{n} \rightarrow \tau\right)^{\mathcal{T}}, c \text { Tree }\right)
$$

is $f_{m}^{\mathcal{T}} \bar{X}_{m+1} \rightarrow\left(f_{m+1}^{\mathcal{T}} \bar{X}_{m+1}\right.$, void $)$. We define a new type environment:

$$
T^{\mathcal{T}}=\left\{X_{1}:: \tau_{1}^{\mathcal{T}}, \ldots, X_{m+1}:: \tau_{m+1}^{\mathcal{T}}\right\}
$$

which ensures:
a) $\left(\Sigma^{\mathcal{T}}, T^{\mathcal{T}}\right) \vdash_{W T} \bar{X}_{m+1}::{\overline{\tau^{\mathcal{T}}}}_{m+1}$.
b) $\left(\Sigma^{\mathcal{T}}, T^{\mathcal{T}}\right) \vdash_{W T} f_{m+1}^{\mathcal{T}} \bar{X}_{m+1}:: \tau_{m+2}^{\mathcal{T}} \rightarrow\left(\left(\tau_{m+3} \rightarrow \ldots \rightarrow \tau_{n} \rightarrow \tau\right)^{\mathcal{T}}\right.$, cTree $)=$ $\left(\left(\tau_{m+2} \rightarrow \tau_{m+3} \rightarrow \ldots \rightarrow \tau_{n} \rightarrow \tau\right)^{T}\right.$, cTree $)$.
c) $\left(\Sigma^{\mathcal{T}}, T^{\mathcal{T}}\right) \vdash_{W T}$ void $::$ cTree
(2) $f_{n-2}^{\mathcal{T}}$

The only rule for $f_{\underline{n-2}}^{\mathcal{T}}:: \tau_{1}^{\mathcal{T}} \rightarrow \ldots \rightarrow \tau_{n-1}^{\mathcal{T}} \rightarrow\left(\left(\tau_{n} \rightarrow \tau\right)^{\mathcal{T}}, c\right.$ Treee $)$ is $f_{n-2}^{\mathcal{T}} \bar{X}_{n-1} \rightarrow\left(f^{\mathcal{T}} \bar{X}_{n-1}\right.$, void $)$, and by defining the same type environment $T$ as above and since $f^{\mathcal{T}}:: \tau_{1}^{\mathcal{T}} \rightarrow \ldots \rightarrow \tau_{n}^{\mathcal{T}} \rightarrow\left(\tau^{\mathcal{T}}, c\right.$ Tree $)$, the result can be checked as in the previous case.

- Auxiliary functions $c_{0}^{\mathcal{T}}, \ldots, c_{n-1}^{\mathcal{T}}$ for $c \in D C^{n}$. Analogous to the previous case.
- Transformed functions.

The well-typedness of transformed functions can be checked in two steps:

1) Assuming a well-type program rule in $P$ :

$$
(R) \quad f t_{1} \ldots t_{n} \rightarrow r \Leftarrow \ldots l_{i}==r_{i} \ldots \quad \text { where }\left\{\ldots s_{j} \leftarrow d_{j} ; \ldots\right\}
$$

For a function with principal type declaration $f: \tau_{1} \rightarrow \tau_{n} \rightarrow \tau$, the transformed function has principal type $f^{\mathcal{T}}: \tau_{1}^{\mathcal{T}} \rightarrow \ldots \rightarrow \tau_{n}^{\mathcal{T}} \rightarrow\left(\tau^{\mathcal{T}}\right.$, cTree $)$ and the transformed program rule looks initially as follows, before starting to apply the transformations $A P_{0}$ and $A P_{1}$ to the local definitions:

$$
\begin{aligned}
\left(R_{0}^{\mathcal{T}}\right) f^{\mathcal{T}} t_{1}^{\mathcal{T}} & \ldots t_{n}^{\mathcal{T}} \rightarrow(R, T) \Leftarrow \ldots C L_{i}==C R_{i} \ldots \\
\text { where\{ } & \ldots \\
s_{j}^{\mathcal{T}} & \leftarrow d_{j}^{\mathcal{T}} ; \\
& \ldots \\
C L_{i} & \leftarrow l_{i}^{\mathcal{T}} ; \\
C R_{i} & \leftarrow r_{i}^{\mathcal{T}} ; \\
& \ldots \\
R & \leftarrow r^{\mathcal{T}} ; \\
T & \left.\leftarrow c N o d e " f "\left[d V a l t_{1}^{\mathcal{T}}, \ldots d \text { Val } t_{n}^{\mathcal{T}}\right](d V a l R) " f \cdot j "(\text { clean }[])\right\}
\end{aligned}
$$

In order to prove that the previous partially transformed program rule is welltyped, we consider a type environment $T$ which well-types the original program rule in the sense defined in Section 2.2.1. We define $T_{0}^{\mathcal{T}}$ in the following way: $T_{0}^{\mathcal{T}}(X)=(T(X))^{\mathcal{T}}$ for all $X \in \operatorname{dom}(T)$.
$T_{0}^{\mathcal{T}}(R)=\tau^{\mathcal{T}}$ with $\tau$ s.t. $(\Sigma, T) \vdash_{W T} r:: \tau$.
$T_{0}^{\mathcal{T}}(T)=c$ Tree.
$T_{0}^{\mathcal{T}}\left(C L_{i}\right)=T_{0}^{\mathcal{T}}\left(C R_{i}\right)=\nu_{i}^{\mathcal{T}}$ with $\nu_{i}$ s.t. $(\Sigma, T) \vdash_{W T} l_{i}:: \nu_{i}:: r_{i}$.
Now:

- Since $(R)$ well-typed, $(\Sigma, T) \vdash_{W T} t_{i}:: \tau_{i}$. By Lemma 7.7,

$$
\left(\Sigma^{\mathcal{T}}, T^{\mathcal{T}}\right) \vdash_{W T} t_{i}^{\mathcal{T}}:: \tau_{i}^{\mathcal{T}}
$$

- $\left(\Sigma^{\mathcal{T}}, T^{\mathcal{T}}\right) \vdash_{W T}(R, T)::\left(\tau^{\mathcal{T}}, c\right.$ Tree $)$.
$-\left(\Sigma^{\mathcal{T}}, T^{\mathcal{T}}\right) \vdash_{W T} C L_{i}:: \nu_{i}^{\mathcal{T}}:: C R_{i}$.
- Since $(R)$ well-typed, $(\Sigma, T) \vdash_{W T} s_{j}:: v:: d_{j}$. By Lemma 7.7,

$$
\left(\Sigma^{\mathcal{T}}, T^{\mathcal{T}}\right) \vdash_{W T} s_{j}^{\mathcal{T}}:: v^{\mathcal{T}}:: d_{j}^{\mathcal{T}}
$$

- Also, by Lemma 7.7, and the construction of $T^{\mathcal{T}}$ :

$$
\begin{aligned}
& \left(\Sigma^{\mathcal{T}}, T^{\mathcal{T}}\right) \vdash_{W T} C L_{i}:: \nu_{i}^{\mathcal{T}}:: l_{i}^{\mathcal{T}} \\
& \left(\Sigma^{\mathcal{T}}, T^{\mathcal{T}}\right) \vdash_{W T} C R_{i}:: \nu_{i}^{\mathcal{T}}:: r_{i}^{\mathcal{T}} \\
& \left(\Sigma^{\mathcal{T}}, T^{\mathcal{T}}\right) \vdash_{W T} R:: \tau^{\mathcal{T}}:: r^{\mathcal{T}}
\end{aligned}
$$

- Finally is easy to check from the signature of $c N o d e, d V a l$ and clean that:
$\left(\Sigma^{\mathcal{T}}, T^{\mathcal{T}}\right) \vdash_{W T}$

$$
\left(c N o d e " f "\left[d V a l t_{1}^{\mathcal{T}}, \ldots, d V a l t_{n}^{\mathcal{T}}\right](d V \text { al } R) " f . j "(\text { clean }[])\right):: c \text { Tree }
$$

and. by definition

$$
\left(\Sigma^{\mathcal{T}}, T^{\mathcal{T}}\right) \vdash_{W T} T: c \text { Tree }
$$

Therefore the initial transformation is well-typed.
2) The consecutive application of rules $A P_{0}$ and $A P_{1}$ transform a well-typed rule into a new well-typed rule. This follows from Lemma 7.8.
Since each rule $A P_{0}$ and $A P_{1}$ reduces the number either the number of either $@_{0}$ or @, and the number of these symbols is finite, the process will end in a well-typed rule.

## Proof of Theorem 4.3

The proof of this theorem depends on the specification of the semantic calculus $F S C^{\mathcal{T}}$ used for deductions with transformed programs. This is presented below:

Definition 7.9 The calculus $F S C^{\mathcal{T}}$ consists of the rules of FSC (i.e. rules $B T, R R, D C, J N$ and $F A$ of the $S C$ described in Section 2.3.1) plus two new rule schemes $d V a l$ and $S F A$ (meaning Suspended Function Application) defined as follows:

- (dVal) dval $t^{\mathcal{T}} \rightarrow\lceil t\rceil$
where:
- $t$ can be any pattern in the original signature.
- $t^{\mathcal{T}}$ is the transformation of pattern $t$ as described in Section 4.2.
- $\lceil t\rceil$ is the representation of $t$ as string.
- (SFA) call $^{\mathcal{T}} \rightarrow(\perp, \perp)$

Here $\mathrm{call}^{\mathcal{T}}$ can be any partial expression which has one of the forms $g^{\mathcal{T}} \overline{s^{\mathcal{T}}}{ }_{m}$ (with $g \in F S^{m}, m \geq 0$ ) or $\left(F s^{\mathcal{T}}\right) \rho^{\mathcal{T}}\left(F\right.$ variable, $s$ pattern, $\rho \in$ Subst $\left._{\perp}\right)$.

Before starting the proof we observe that the $S C$ deduction $P \vdash_{S C} f \overline{t_{n}} \rightarrow t$ can be replaced by $P_{F} \vdash_{F S C} \quad f \overline{t_{n}} \rightarrow t$ due to the semantic correctness of flattening (Theorem 4.1). Now we are ready to prove items (i) and (ii) of the theorem.
(i) Assume a $F S C$ proof tree $T$ witnessing $P_{F} \vdash_{F S C} f \bar{t}_{n} \rightarrow t$ with associated APT apt. Reasoning by induction on the structure of $T$ we show that it is possible to find a total ct :: cTree representing apt such that

$$
P^{\mathcal{T}} \vdash_{F S C^{\mathcal{T}}} f^{\mathcal{T}}{\overline{t^{\mathcal{T}}}}_{n} \rightarrow\left(t^{\mathcal{T}}, c t\right)
$$

Since $t \neq \perp$, the inference step at the root of $T$ must be a $F A$ step using one of the defining rules for $f$ in $P_{F}$ instantiated by some $\rho \in S u b s t_{\perp}$. Let us consider
this program rule $r l_{F} \in P_{F}$ along with the corresponding program rules $r l \in P$ and $r l^{\mathcal{T}} \in P^{\mathcal{T}}$ respectively. In the sequel we assume that $r l^{\mathcal{T}}$ and $r l_{F}$ have the forms shown at the end of Section 4.4 and in Section 4.7, respectively, except that the left-hand sides are now assumed to be $f^{\mathcal{T}} p_{1}^{\mathcal{T}} \ldots p_{n}^{\mathcal{T}}$ and $f p_{1} \ldots p_{n}$, respectively. In the reasonings below, we make implicit use of Proposition 2.1 and Lemma 7.6 at several places.

The substitution $\rho$ must be such that the inference step at the root of $T$ as well as the rest of $T$ succeed. Therefore we can assume:
(1) $\bar{p}_{n} \rho=\bar{t}_{n}$.
(2) $P_{F} \vdash_{F S C} \quad R \rho \rightarrow t$ i.e. $t \sqsubseteq R \rho$ (since $t, R \rho$ patterns).
(3) $P_{F} \vdash_{F S C}\left(\right.$ call $\left._{k} \rightarrow R_{k}\right) \rho$ for each condition $R_{k} \leftarrow \operatorname{call}_{k}$ in $r l_{F}$ (proved by subtrees $T_{k}$ of $T$ with smaller size than $T$ ).
(4) $P_{F} \vdash_{F S C} \quad\left(s_{j} \leftarrow w_{j}\right) \rho$ i.e. $s_{j} \rho \sqsubseteq w_{j} \rho$ for each condition $s_{j} \leftarrow w_{j}$ in $r l_{F}$ (since $s_{j} \rho, w_{j} \rho$ are patterns).
(5) $P_{F} \vdash_{F S C} \quad\left(L S_{i} \leftarrow u_{i}\right) \rho$ and $P_{F} \vdash_{F S C} \quad\left(R S_{i} \leftarrow v_{i}\right) \rho$ i.e. $L S_{i} \rho \sqsubseteq u_{i} \rho$ and $R S_{i} \rho \sqsubseteq v_{i} \rho$ (since $L S_{i} \rho, u_{i} \rho, R S_{i} \rho, v_{i} \rho$ are patterns) for all conditions $L S_{i} \leftarrow u_{i}, R S_{i} \leftarrow v_{i}$ in $r l_{F}$.
(6) $P_{F} \vdash_{F S C}(R \leftarrow v) \rho$ i.e. $R \rho \sqsubseteq v \rho$, since $R \rho, v \rho$ are patterns.

Now we look for a corresponding $\rho^{\mathcal{T}} \in S u b s t_{\perp}^{\mathcal{T}}$ defined in such a way that we can build a $F S C^{\mathcal{T}}$ proof tree $T^{\prime}$ witnessing $P^{\mathcal{T}} \vdash_{F S C^{\mathcal{T}}} \quad f^{\mathcal{T}} \overline{t_{n}^{\mathcal{T}}} \rightarrow\left(t^{\mathcal{T}}, c t\right)$, so that the inference step at the root of $T^{\prime}$ will be a $F A$ inference using the $\rho^{\mathcal{T}}$-instance of the program rule $r l^{\mathcal{T}}$. As a partial definition of $\rho^{\mathcal{T}}$ we assume: $\rho^{\mathcal{T}}(X)=\rho(X)^{\mathcal{T}}$ for all $X \in \operatorname{dom}(\rho)$. The effect of $\rho^{\mathcal{T}}$ over those variables of $r l^{\mathcal{T}}$ which do not appear in $r l_{F}$ (namely $T$ and the various $T_{k}$ ) will be defined later. Presently, the partial definition of $\rho^{\mathcal{T}}$ allows us to draw some conclusions from items (1) - (6) above:
$\left(1^{\prime}\right) \bar{p}_{n}^{\mathcal{T}} \rho^{\mathcal{T}}=\left(\bar{p}_{n} \rho\right)^{\mathcal{T}}={\overline{t^{\mathcal{T}}}{ }_{n} .}$.
$\left(2^{\prime}\right) t^{\mathcal{T}} \sqsubseteq R \rho^{\mathcal{T}}$ i.e. $P^{\mathcal{T}} \vdash_{F S C^{\mathcal{T}}} R \rho^{\mathcal{T}} \rightarrow t^{\mathcal{T}}$ (since $t^{\mathcal{T}}, R \rho^{\mathcal{T}}$ patterns).
$\left(3^{\prime}\right)$ Each condition $\left(R_{k}, T_{k}\right) \leftarrow \operatorname{call}_{k}^{\mathcal{T}}$ in $r l^{\mathcal{T}}$ corresponds to $R_{k} \leftarrow \operatorname{call}_{k}$ in $r l_{F}$. Here we can distinguish three cases:
(3.1') $R_{k} \rho \neq \perp$ and call $_{k}=g \bar{s}_{m}$ for some $g \in F S^{m}, m \geq 0$ and some patterns $\bar{s}_{m}$. Then $\operatorname{call}_{k}^{\mathcal{T}} \rho^{\mathcal{T}}=g^{\mathcal{T}} \bar{s}_{m}^{\mathcal{T}} \rho^{\mathcal{T}}=g^{\mathcal{T}}\left(\bar{s}_{m} \rho\right)^{\mathcal{T}}$ and by I.H. applied to $P_{F} \vdash_{F S C} g \bar{s}_{m} \rho \rightarrow R_{k} \rho$ we can assume $P^{\mathcal{T}} \vdash_{F S C^{\mathcal{T}}} \operatorname{call}_{k}^{\mathcal{T}} \rho^{\mathcal{T}} \rightarrow\left(R_{k} \rho^{\mathcal{T}}, c t_{k}\right)$ where $c t_{k}:: c$ Tree represents $a p t_{k}$, the APT extracted from $T_{k}$.
$\left(\left(3.2^{\prime}\right) R_{k} \rho \neq \perp\right.$ and $c a l l_{k}=F s$ with $F$ variable. Since $F \rho$ and $s \rho$ are patterns, $P_{F} \vdash_{F S C} \quad\left(F s \rightarrow R_{k}\right) \rho$, and $R_{k} \rho \neq \perp$, it follows that $F \rho$ must be a rigid pattern. We consider different subcases according to the form of $F \rho$ :
(3.2.1') $F \rho=c \bar{s}_{m}, m \geq 0, \operatorname{ar}(c)=m+1, c \in D C$.

Since $P_{F} \vdash_{F S C} F \rho s \rho \rightarrow R_{k} \rho, s \rho$ must be a pattern s.t. $R_{k} \rho \sqsubseteq c \bar{s}_{m} s \rho$. Moreover:
 step holds because of the definition of the transformation ${ }^{\mathcal{T}}$. $P^{\mathcal{T}}$ includes the program rule ${\overline{c^{T}}}_{m} \bar{X}_{m+1} \rightarrow\left(c \bar{X}_{m+1}\right.$, void $)$. Using this rule and $R_{k} \rho^{T} \sqsubseteq c \overline{s^{T}}{ }_{m}\left(s^{\mathcal{T}} \rho^{T}\right)$, we can derive:

$$
P^{\mathcal{T}} \vdash_{F S C^{\mathcal{T}}} c_{m}^{\mathcal{T}}{\overline{s^{\mathcal{T}}}}_{m}\left(s^{\mathcal{T}} \rho^{\mathcal{T}}\right) \rightarrow\left(R_{k} \rho^{\mathcal{T}}, \text { void }\right)
$$

i.e.

$$
P^{\mathcal{T}} \vdash_{F S C^{T}} \operatorname{call}_{k}^{\mathcal{T}} \rho^{\mathcal{T}} \rightarrow\left(R_{k} \rho^{\mathcal{T}}, \text { void }\right)
$$

(3.2.2') $F \rho=c \bar{s}_{m}, m \geq 0 \operatorname{ar}(c)>m+1, c \in D C$. Analogous to the previous case but using the $P^{\mathcal{T}}$ rule $c_{m}^{\mathcal{T}} \bar{X}_{m+1} \rightarrow\left(c_{m+1}^{\mathcal{T}}\right.$, void $)$.
(3.2.3') $F \rho=g \bar{s}_{m}, m \geq 0 \operatorname{ar}(g)=m+1, g \in F S$. In this case:

$$
\operatorname{call}_{k}^{\mathcal{T}} \rho^{\mathcal{T}}=\left(F s^{\mathcal{T}}\right) \rho^{\mathcal{T}}=\left(g \bar{s}_{m}\right)^{\mathcal{T}}\left(s^{\mathcal{T}} \rho^{\mathcal{T}}\right)=g^{\mathcal{T}} \overline{s^{\mathcal{T}}}{ }_{m}\left(s^{\mathcal{T}} \rho^{\mathcal{T}}\right)
$$

By I.H. applied to $P_{F} \vdash_{F S C} g \bar{s}_{m}(s \rho) \rightarrow R_{k} \rho$ we arrive to the same conclusion as in case (3.1'), namely: $P^{T} \vdash_{F S C^{\top}} \operatorname{call}_{k}^{\mathcal{T}} \rightarrow\left(R_{k} \rho^{\mathcal{T}}, c t_{k}\right)$ where $c t_{k}:: c T r e e ~ r e p r e s e n t s ~ t h e ~ A P T ~ e x t r a c t e d ~ f r o m ~ T ~ T ~ . ~$
(3.2.4') $F \rho=g \bar{s}_{m}, m \geq 0, a r(g)>m+1, g \in F S$. Similarly to (3.2.1'), since $P_{F} \vdash_{F S C}(F \rho)(s \rho) \rightarrow R_{k} \rho, s \rho$ must be s.t. $R_{k} \rho \sqsubseteq g \bar{s}_{m}(s \rho)$. Moreover call ${ }_{k}^{\mathcal{T}} \rho^{\mathcal{T}}=\left(F s^{\mathcal{T}}\right) \rho^{\mathcal{T}}=\left(g \bar{s}_{m}\right)^{\mathcal{T}}\left(s^{\mathcal{T}} \rho^{\mathcal{T}}\right)=g_{m}^{\mathcal{T}} \bar{s}^{\mathcal{T}}{ }_{m}\left(s^{\mathcal{T}} \rho^{\mathcal{T}}\right)$, and $P^{\mathcal{T}}$ includes one of the two following defining rules:
(R1) $g_{m}^{\mathcal{T}} \bar{X}_{m+1} \rightarrow\left(g^{\mathcal{T}} \bar{X}_{m+1}\right.$,void) if $m+2<\operatorname{ar}(g)$.
(R2) $g_{m}^{\tau} \bar{X}_{m+1} \rightarrow\left(g^{T} \bar{X}_{m+1}\right.$,void) if $m+2=\operatorname{ar}(g)$.
In the case $m+2<\arg (g)$ we have:

- $P^{\mathcal{T}} \vdash_{F S C^{\mathcal{T}}} \operatorname{call}_{k}^{\mathcal{T}} \rho^{\mathcal{T}} \rightarrow\left(g_{m+1}^{\mathcal{T}} \overline{s_{m}^{\mathcal{T}}}\left(s^{\mathcal{T}} \rho^{\mathcal{T}}\right)\right.$, void) using (R1).
- $R_{k} \rho^{\mathcal{T}} \sqsubseteq\left(\left(g \bar{S}_{m}\right)(s \rho)\right)^{\mathcal{T}}=g_{m+1}^{\tau} \frac{\overline{S^{\mathcal{T}}}}{m}\left(s^{\mathcal{T}} \rho^{\mathcal{T}}\right)$.

Similarly, in the case $m+2=\arg (g)$ :

- $P^{\mathcal{T}} \vdash_{F S C^{T}}$ call $\mathcal{L}_{k}^{\mathcal{T}} \rightarrow\left(g^{\mathcal{T}} \overline{s_{m}^{\tau}}\left(s^{\mathcal{T}} \rho^{\mathcal{T}}\right)\right.$, void) using (R2).
- $R_{k} \rho^{\mathcal{T}} \sqsubseteq\left(\left(g \bar{s}_{m}\right)(s \rho)\right)^{\mathcal{T}}=g^{\mathcal{T}} \frac{s^{T}}{s^{T}}\left(s^{\mathcal{T}} \rho^{\mathcal{T}}\right)$.

In both cases, we can conclude that $P^{\mathcal{T}} \vdash_{F S C^{\mathcal{T}}}$ call $_{k}^{\mathcal{T}} \rho^{\mathcal{T}} \rightarrow\left(R_{k} \rho^{\mathcal{T}}\right.$, void $)$.
(3.3') $R_{k} \rho=\perp$. In this case $T_{k}$ must reduce to one single step, applying the $S C$ inference BT, and we can establish no definite conclusion about call $_{k} \rho$, except that it must have one of the following forms:
(*) $g \bar{s}_{m}$, with $g \in F S_{m}, m \geq 0 ; \bar{s}_{m}$ patterns.
$(* *)(F s) \rho$, which might be even flexible if $F \rho=F$.
In both cases, we can use the special $F S C^{T}$-inference $S F A$ to derive: $P^{\mathcal{T}} \vdash_{F S C^{\top}} \operatorname{call}_{k}^{\mathcal{T}} \rightarrow(\perp, \perp)$.
$\left(4^{\prime}\right)\left(s_{j} \rho\right)^{\mathcal{T}} \sqsubseteq\left(w_{j} \rho\right)^{\mathcal{T}}$ i．e．$s_{j}^{\mathcal{T}} \rho^{\mathcal{T}} \sqsubseteq w_{j}^{\mathcal{T}} \rho^{\mathcal{T}}$ i．e．$P^{\mathcal{T}} \vdash_{F S C^{\mathcal{T}}} \quad\left(s_{j}^{\mathcal{T}} \leftarrow w_{j}^{\mathcal{T}}\right) \rho^{\mathcal{T}}$ for each condition $s_{j}^{\mathcal{T}} \leftarrow w_{j}^{\mathcal{T}}$ in $r l^{\mathcal{T}}$（since $s_{j}^{\mathcal{T}} \rho^{\mathcal{T}}, w_{j}^{\mathcal{T}} \rho^{\mathcal{T}}$ are patterns）．
$\left(5^{\prime}\right)\left(L S_{i} \rho\right)^{\mathcal{T}} \sqsubseteq\left(u_{i} \rho\right)^{\mathcal{T}}$ i．e．$L S_{i} \rho^{\mathcal{T}} \sqsubseteq u_{i}^{\mathcal{T}} \rho^{\mathcal{T}}$ i．e．$P^{\mathcal{T}} \vdash_{F S C^{\mathcal{T}}}\left(L S_{i} \leftarrow u_{i}^{\mathcal{T}}\right) \rho^{\mathcal{T}}$ and $\left(R S_{i} \rho\right)^{\mathcal{T}} \sqsubseteq\left(v_{i} \rho\right)^{\mathcal{T}}$ i．e．$R S_{i} \rho^{\mathcal{T}} \sqsubseteq v_{i}^{\mathcal{T}} \rho^{\mathcal{T}}$ i．e．$P^{\mathcal{T}} \vdash_{F S C^{\mathcal{T}}}\left(R S_{i} \leftarrow v_{i}^{\mathcal{T}}\right) \rho^{\mathcal{T}}$ ，
for each condition $L S_{i} \leftarrow u_{i}^{\mathcal{T}}, R S_{i} \leftarrow v_{i}^{\mathcal{T}}$ in $r l^{\mathcal{T}},\left(L S_{i} \rho^{\mathcal{T}}, u_{i}^{\mathcal{T}} \rho^{\mathcal{T}}, R S_{i}^{\mathcal{T}} \rho^{\mathcal{T}}, v_{i}^{\mathcal{T}} \rho^{\mathcal{T}}\right.$ are patterns）．
$\left(6^{\prime}\right)(R \rho)^{\mathcal{T}} \sqsubseteq(v \rho)^{\mathcal{T}}$ i．e．$R \rho^{\mathcal{T}} \sqsubseteq v^{\mathcal{T}} \rho^{\mathcal{T}}$ i．e．$P^{\mathcal{T}} \vdash_{F S C^{\mathcal{T}}}\left(R \leftarrow v^{\mathcal{T}}\right) \rho,\left(R \rho^{\mathcal{T}}, v^{\mathcal{T}} \rho^{\mathcal{T}}\right.$ are patterns）．
At this point we can complete the definition of $\rho^{\mathcal{T}}$ by requiring：
－$\rho^{\mathcal{T}}\left(T_{k}\right)=c t_{k}$ ，for all those $k$ corresponding to case（3．1＇）or case（3．2．3＇）．
－$\rho\left(T_{k}\right)=$ void，for all those $k$ corresponding to some of the cases（3．2．1＇）， （3．2．2＇），（3．2．4＇）．
－$\rho^{\mathcal{T}}\left(T_{k}\right)=\perp$ ，for all those $k$ corresponding to case $\left(3.3^{\prime}\right)$ ．
－$\rho(T)=\mathrm{cNode}$＂ f ＂$\left[t_{1}^{\mathcal{T}\rceil}, \ldots,\left\lceil t_{n}^{\mathcal{T}\rceil}\right]\left\lceil R \rho^{\mathcal{T}\rceil}\right.\right.$＂f．ind＂$\left[\ldots c t_{k} \ldots\right]$
where：
${ }^{\lceil } t_{i}^{\mathcal{T}\rceil}(1 \leq i \leq n),\left\lceil R \rho^{\mathcal{T}\rceil}\right.$ are the representations of the patterns $t_{i}^{\mathcal{T}}(1 \leq i \leq n)$ ， $R \rho^{\mathcal{T}}$ as strings．
－＂f＂resp．＂f．ind＂are the strings which represent the symbol $f$ and the symbol $f$ followed by the index member of the program rule $r l$（among the program rules for $f$ ，taken in textual order）．
－$\left[\ldots c t_{k} \ldots\right]$ is the list of all those $c t_{k}$ corresponding to cases $\left(3.1^{\prime}\right),\left(3.2 .3^{\prime}\right)$ ．
Let $c t=\rho^{\mathcal{T}}(T)$ ．We claim that $P^{\mathcal{T}} \vdash_{F S C^{\mathcal{T}}} f^{\mathcal{T}}{\overline{t^{\mathcal{T}}}}_{n} \rightarrow\left(t^{\mathcal{T}}\right.$ ，ct）and that $c t:: c$ Tree represents apt，the APT extracted from the FSC proof tree $T$ which proved $P_{F} \vdash_{F S C} f \bar{t}_{n} \rightarrow t$ ．To justify the claim we build a $F S C^{\mathcal{T}}$ proof tree $T^{\prime}$ whose last step is a $F A$ inference using the $\rho^{\mathcal{T}}$－instance of the program rule $r l^{\mathcal{T}} \in P^{\mathcal{T}}$ ．Items（ $\left.1^{\prime}\right)-\left(6^{\prime}\right)$ show that the instantiated rule can be applied，and that all the conditions occurring as premises of $F A$ ，except the last one，can be proved by means of $F S C^{\mathcal{T}}$ derivations．The last condition is：

$$
\begin{aligned}
(T \leftarrow \mathrm{cNode} " & f "\left[d V a l p_{1}^{\mathcal{T}}, \ldots, d \operatorname{Val} p_{n}^{\mathcal{T}}\right](d V \text { al } R) \\
& \left." f . i n d "\left(\text { clean }\left[\ldots\left(d V a l R_{k}, T_{k}\right) \ldots\right]\right)\right) \rho^{\mathcal{T}}
\end{aligned}
$$

This can be also derived from $P^{\mathcal{T}}$ in $F S C^{\mathcal{T}}$ ，because：
－$T \rho^{\mathcal{T}}$ is $c t$ ，as defined above．
－For all $i \leq i \leq n$ ，dVal $\left(p_{i}^{\mathcal{T}} \rho^{\mathcal{T}}\right)=d V a l t_{i}^{\mathcal{T}}$ ，and $P^{\mathcal{T}} \vdash_{F S C^{\mathcal{T}}} d V a l t_{i}^{\mathcal{T}} \rightarrow$ $\left\lceil t_{i}^{\mathcal{T}\rceil}\right.$ by the special $F S C^{\mathcal{T}}$－inference（ $d V a l$ ）．
－$P^{\mathcal{T}} \vdash_{F S C^{\mathcal{T}}} d V a l R \rho^{\mathcal{T}} \rightarrow 「 R \rho^{\mathcal{T}\rceil}$ also because of $(d V a l)$ ．
－$P^{\mathcal{T}} \vdash_{F S C^{\mathcal{T}}}$ clean $\left[\ldots,\left(d V a l R_{k}, T_{k}\right) \rho^{\mathcal{T}}, \ldots\right] \rightarrow\left[\ldots, c t_{k}, \ldots\right]$ ，
where $\left[\ldots, c t_{k}, \ldots\right]$ stands for the list of those $c t_{k}$ corresponding to cases $\left(3.1^{\prime}\right),\left(3.2 .3^{\prime}\right)$ ．This follows from the definition of clean，because those $k$ which correspond to other cases are such that either $R_{k} \rho^{\mathcal{T}}=\perp$（and then $P^{\mathcal{T}} \vdash_{F S C^{\mathcal{T}}}$ dVal $\left.R_{k} \rho^{\mathcal{T}} \rightarrow 「 \perp\right\urcorner, P^{\mathcal{T}} \vdash_{F S C^{\mathcal{T}}}$ isBottom $\left.「 \perp\right\rceil \rightarrow$ true）or
$\rho^{\mathcal{T}}\left(T_{k}\right)=$ void.
Finally, observe that ct indeed represents apt, because apt is the APT extracted from $T$, and therefore its structure is:


Note that the children are the APT's $a p t_{k}$ corresponding to the uppermost FA steps in $T$ different from the root step and corresponding to function calls which return a value different from $\perp$. These FA inferences correspond to the conditions $\left(R_{K} \leftarrow \operatorname{call}_{k}\right) \rho$ in $r l_{F} \rho$, but excluding some cases:

- Those $k$ such that $R_{k} \rho=\perp$, i.e. case (3.3').
- Those $k$ such that $R_{k} \rho \neq \perp$ but $\left(R_{k} \leftarrow \operatorname{call}_{k}\right) \rho$ has been proved (within $T$ ) without applying inference FA, i.e. cases (3.2.1'), (3.2.2') and (3.2.4').

The remaining cases are just (3.1') and (3.2.3'), for which we know that $\mathrm{apt}_{k}$ is represented by $c t_{k}:: c$ Tree. Therefore, ct really represents apt.

Assume that $T^{\prime}$ is a $F S C^{\mathcal{T}}$ proof tree witnessing $P^{\mathcal{T}} \vdash_{F S C^{\mathcal{T}}} f^{\mathcal{T}} \overline{t_{n}^{\mathcal{T}}} \rightarrow\left(t^{\mathcal{T}}, c t\right)$. Reasoning by induction on the structure of $T^{\prime}$ we can build a FSC proof tree $T$ witnessing $P_{F} \vdash_{F S C} f \overline{t_{n}} \rightarrow t$. A detailed proof would be similar to that of item (i). The intuitive idea is as follows:

- All the steps in $T^{\prime}$ having to do with the computation of values of type cTtree can be ignored. In particular we can ignore all the applications of the $F S C^{\mathcal{T}}$ rule ( $d V a l$ ), as well as all the applications of the $F S C^{\mathcal{T}}$ rule $F A$ corresponding to the application of the auxiliary functions clean, irrelevant, is Void and isBottom.
All the $F A$ steps in $T^{\prime}$ dealing with the application of $g^{\mathcal{T}}$ for some $g \in F S$ (maybe $f$ itself) can be converted into corresponding $F A$ steps in $T$, using a corresponding instance of the program rule. This idea works because of the clear one-to-one correspondence between the program rules of $P^{\mathcal{T}}$ and $P_{F}$.
More formally, the inductive reasoning works because each $F A$ step in $T^{\prime}$ uses a program rule instance whose conditions $\left(R_{k}, T_{k}\right) \leftarrow$ call $_{k}$ have instances of the form $g^{\mathcal{T}} \overline{s^{\mathcal{T}}}{ }_{m} \rightarrow\left(s^{\mathcal{T}}, c t\right)$ (for some $g \in F S^{m}$ ), such that $P^{\mathcal{T}} \vdash_{F S C^{\mathcal{T}}}$ $g^{\mathcal{T}} \overline{s^{\mathcal{T}}}{ }_{m} \rightarrow\left(s^{\mathcal{T}}, c t\right)$, with $F S C^{\mathcal{T}}$ proof trees of smaller size than $T^{\prime}$ included as parts of $T^{\prime}$.


## Proof of Theorem 4.5

In order to prove the theorem we assume:
(1) $G \Vdash_{G S, P} \theta$.

And we reason as follows:
(2) sol $\bar{X}_{n} \theta=$ true $\Vdash_{G S, \text { Psol }}^{1 s t}$ id, by (1) and stability of $G S$.
(3) $P_{\text {sol }} \vdash_{S C}$ sol $\bar{X}_{n} \theta \rightarrow$ true with APT apt which can be extracted from the computation (2). By (2) and soundness of $G S$.
(4) $P_{\text {sol }}^{\mathcal{T}} \vdash_{F S C^{\mathcal{T}}}$ sol ${ }^{\mathcal{T}} \bar{X}_{n} \theta^{\mathcal{T}} \rightarrow($ true, $c t)$ where $c t::$ cTree represents apt. This holds by (3) and the semantic correctness of the program transformation (Theorem 4.3, item (i)).
(5) $\operatorname{sol}^{\mathcal{T}} \bar{X}_{n} \theta^{\mathcal{T}}==($ true,$T) \Vdash_{G S, P_{\text {sol }}^{\mathcal{T}}}^{1 \text { st }}\{T \mapsto c t\}$. By (2), (3), (4) and weak completeness of $G S$.
Note that ct represents apt, an APT witnessing (3). Due to the definition of sol in $P_{\text {sol }}$, apt serves also as witness of $P \vdash_{S C} G \theta$.

### 7.3 Proofs of Results from Section 5

## Proof of Theorem 5.1

First we present two auxiliary lemmata.
Lemma 7.10 Let $S_{i} \square W_{i}$ be a configuration obtained after $i$ steps of the algorithm described in Section 5, and $(s \rightarrow t) \in S_{i}$.
Then $\operatorname{var}(s) \cap W_{i}=\emptyset \vee \operatorname{var}(t) \cap W_{i}=\emptyset$.

## Proof

We reason by induction on $i$.
Basis. The result holds for the first configuration because of the construction of $S_{0}$ and $W_{0}$, since the two initial basic facts have no common variables.
Inductive step.
Consider the $i$-th step of the algorithm $(i \geq 1): S_{i-1} \square W_{i-1} \vdash_{\theta_{i}} S_{i} \square W_{i}$. Let $s \rightarrow t$ be any approximation statement in $S_{i}$. We can distinguish two cases:
$-s \rightarrow t=(a \rightarrow b) \theta_{i}$ for some $a \rightarrow b$ in $S_{i-1}$. By I.H. either $a$ or $b$ (or both) share no variables with $W_{i-1}$. Assume that $\operatorname{var}(a) \cap W_{i-1}=\emptyset$ (analogous for $b)$. Then, since $\operatorname{dom}\left(\theta_{i}\right) \subseteq W_{i-1}, s=a \theta_{i}=a$ and since $W_{i}$ coincides with $W_{i-1}$ except for the possible addition of some new fresh variables, $\operatorname{var}(s) \cap W_{i}=\emptyset$.

- $s \rightarrow t$ is some of the new approximation statements introduced either by rule R3 or R6. In the case of $R 3$, each $a_{i} \rightarrow b_{i}$ must fulfill the result, applying I.H. to $h \bar{a}_{m} \rightarrow h \bar{b}_{m}$. The case of R6 it is clear from I.H. that $\operatorname{var}\left(h \bar{a}_{m}\right) \cap W_{i-1}=\emptyset$ and therefore also $\operatorname{var}\left(a_{i}\right) \cap W_{i}=\emptyset$ for all $1 \geq i \geq m$.

Lemma 7.11 Let $S_{i} \square W_{i} \vdash_{\theta_{i+1}} S_{i+1} \square W_{i+1}$ be some step of the algorithm described in Sect. 5. Then $\operatorname{Sol}\left(S_{i} \square W_{i}\right)=\left.\left(\theta_{i+1} \operatorname{Sol}\left(S_{i+1} \square W_{i+1}\right)\right)\right|_{W_{i}}$.

## Proof

The Lemma can be proved by examining the transformation rule applied at the given step. In the case of rules R1, R2 and R3, $\theta_{i+1}=i d, W_{i+1}=W_{i}$ and the result follows from the definition of the approximation ordering $\sqsubseteq$, as
given in Section 2.1. Rules R4, R5 and R6 are considered below.
$\mathbf{R 4} \operatorname{Sol}(s \rightarrow X, S \square W)=\{X \mapsto s\} \operatorname{Sol}(S\{X \mapsto s\} \square W)$
a) $\operatorname{Sol}(s \rightarrow X, S \square W) \subseteq\{X \mapsto s\} \operatorname{Sol}(S\{X \mapsto s\} \square W)$

Let $\theta \in \operatorname{Sol}(s \rightarrow X, S \square W)$. Then:

- $X \theta=s \theta$, since $X \theta \sqsubseteq s \theta$ and $\theta$ is a total substitution.
- $S \theta$ holds
- $\theta=\{X \mapsto s\} \theta$, because for any $Y \in \operatorname{Var}$, if $Y \neq X$ then $Y\{X \mapsto s\} \theta=Y \theta$ and if $Y=X$ then $Y\{X \mapsto s\} \theta=s \theta=X \theta=Y \theta$.
Therefore $S\{X \mapsto s\} \theta=S \theta$ holds, and hence $\theta \in \operatorname{Sol}(S\{X \mapsto s\} \square W)$.
Finally, considering again that $\theta=\{X \mapsto s\} \theta$, the expected result $\theta \in\{X \mapsto s\} \operatorname{Sol}(S\{X \mapsto s\} \square W)$ is obtained.
b) $\{X \mapsto s\} \operatorname{Sol}(S\{X \mapsto s\} \square W) \subseteq \operatorname{Sol}(s \rightarrow X, S \square W)$

Any element in $\{X \mapsto s\} \operatorname{Sol}(S\{X \mapsto s\} \square W)$ must be of the form $\{X \mapsto s\} \theta$, with $\theta \in \operatorname{Sol}(S\{X \mapsto s\} \square W)$. Then:

- $S\{X \mapsto s\} \theta$ holds.
- $s\{X \mapsto s\} \theta=X\{X \mapsto s\} \theta$. To check this, note that $X \notin \operatorname{var}(s)$, because $X \in W$ implies $\operatorname{var}(s) \cap W=\emptyset$, by Lemma 7.10. Then $s\{X \mapsto s\} \theta=s \theta=$ $X\{X \mapsto s\} \theta$.
Hence $\{X \mapsto s\} \theta \in \operatorname{Sol}(s \rightarrow X, S \square W)$.

R5 $\operatorname{Sol}(X \rightarrow Y, S \square W)=\{X \mapsto Y\} \operatorname{Sol}(S\{X \mapsto Y\} \square W)$
Analogous to the previous case.

R6 $\operatorname{Sol}\left(X \rightarrow h \bar{a}_{m}, S \square W\right)=$
$\left(\left\{X \mapsto h \bar{X}_{m}\right\} \operatorname{Sol}\left(\ldots, X_{k} \rightarrow a_{k}, \ldots, S\left\{X \mapsto h \bar{X}_{m}\right\} \square W, \bar{X}_{m}\right) \upharpoonright_{W}\right.$
a) $\operatorname{Sol}\left(X \rightarrow h \bar{a}_{m}, S \square W\right) \subseteq$
$\left(\left.\left\{X \mapsto h \bar{X}_{m}\right\} \operatorname{Sol}\left(\ldots, X_{k} \rightarrow a_{k}, \ldots, S\left\{X \mapsto h \bar{X}_{m}\right\} \square W, \bar{X}_{m}\right)\right|_{W}\right.$
Let $\theta \in \operatorname{Sol}\left(X \rightarrow h \bar{a}_{m}, S \square W\right)$. Then:

- $X \theta=h \bar{t}_{m}$ with $a_{k} \theta \sqsubseteq t_{k}$.
- $S \theta$ holds.

Consider the total substitution $\rho=_{\operatorname{def}} \theta ৬\left\{X_{1} \mapsto t_{1}, \ldots, X_{m} \mapsto t_{m}\right\}$. Then :

- $X_{k} \rho=t_{k}, a_{k} \rho=a_{k} \theta$ and therefore $a_{k} \rho \sqsubseteq X_{k} \rho$.
- $S\left\{X \mapsto h \bar{X}_{m}\right\} \rho=S \theta$ holds.

Hence $\rho \in \operatorname{Sol}\left(\ldots, X_{k} \rightarrow a_{k}, \ldots, S\left\{X \mapsto h \bar{X}_{m}\right\} \square W, \bar{X}_{m}\right)$.
Moreover $\left\{X \mapsto h \bar{X}_{m}\right\} \underline{\rho \upharpoonright_{W}}=\theta$.
Therefore $\theta \in\left(\left\{X \mapsto h \bar{X}_{m}\right\} \operatorname{Sol}\left(\ldots, X_{k} \rightarrow a_{k}, \ldots, S\left\{X \mapsto h \bar{X}_{m}\right\} \square W, \bar{X}_{m}\right) \upharpoonright_{W}\right.$.
b) $\left(\left\{X \mapsto h \bar{X}_{m}\right\} \operatorname{Sol}\left(\ldots, X_{k} \rightarrow a_{k}, \ldots, S\left\{X \mapsto h \bar{X}_{m}\right\} \square W, \bar{X}_{m}\right) \upharpoonright_{W} \subseteq\right.$ $\operatorname{Sol}\left(X \rightarrow h \bar{a}_{m}, S \square W\right)$
Any member of $\left(\left\{X \mapsto h \bar{X}_{m}\right\} \operatorname{Sol}\left(\ldots, X_{k} \rightarrow a_{k}, \ldots, S\left\{X \mapsto h \bar{X}_{m}\right\} \square W, \bar{X}_{m}\right) \upharpoonright_{W}\right.$ must be of the form $\theta=\left(\left\{X \mapsto h \bar{X}_{m}\right\} \rho\right) \upharpoonright_{W}$ with
$\rho \in \operatorname{Sol}\left(\ldots, X_{k} \rightarrow a_{k}, \ldots, S\left\{X \mapsto h \bar{X}_{m}\right\} \square W, \bar{X}_{m}\right)$ s.t.:
(1) For each $k, a_{k} \rho \sqsubseteq X_{k} \rho$ holds.
(2) $S\left\{X \mapsto h \bar{X}_{m}\right\} \rho=$ holds.

By Lemma 7.10, and since $X \in W, \operatorname{var}\left(a_{k}\right) \cap W=\emptyset$.
Also, $\operatorname{var}\left(a_{k}\right) \cap\left(W, \bar{X}_{m}\right)=\emptyset$, since $\bar{X}_{m}$ are fresh variables.
Therefore $a_{k} \rho \sqsubseteq X_{k} \rho$ iff $a_{k} \sqsubseteq X_{k} \rho$. Calling $b_{k}$ to each $X_{k} \rho$ :
(3) $a_{k} \rho \sqsubseteq X_{k} \rho$ iff $a_{k} \sqsubseteq b_{k}$.

This means that $\theta$ must be of the form $\theta=\left\{X \mapsto h \bar{b}_{m}\right\} \cup \rho \upharpoonright_{(W-\{X\})}$. Then:

- $\left(X \rightarrow h \bar{a}_{m}\right) \theta=h \bar{b}_{m} \rightarrow h \bar{a}_{m}$ which holds iff for each $k a_{k} \sqsubseteq b_{k}$ which is true by (3) and (1).
- $S \theta=S\left(\left\{X \mapsto h \bar{b}_{m}\right\} \cup \rho \hat{( }_{(W-\{X\})}\right)=S\left\{X \mapsto h \bar{X}_{m}\right\} \rho$ which holds by (2).

Now, Theorem 5.1 can be proved as follows:
To prove that the algorithm is terminating we define a well founded lexicographic order between configurations.
We say that $K_{i}<K_{j}$ (with $K_{i}=S_{i} \square W_{i}, K_{j}=S_{j} \square W_{j}$ ) iff
a) $\left\|K_{i}\right\|_{1}<\left\|K_{j}\right\|_{1}$, or
b) $\left\|K_{i}\right\|_{1}=\left\|K_{j}\right\|_{1}$ and $\left\|K_{i}\right\|_{2}<\left\|K_{j}\right\|_{2}$, or
c) $\left\|K_{i}\right\|_{1}=\left\|K_{j}\right\|_{1}$ and $\left\|K_{i}\right\|_{2}=\left\|K_{j}\right\|_{2}$, and $\left\|K_{i}\right\|_{3}<\left\|K_{j}\right\|_{3}$. where:

- $\|S \square W\|_{1}=$ number of occurrences of rigid patterns $h \bar{a}_{m}, m \geq 0$ in some $(s \rightarrow t) \in S$ s.t.:
a) If $h \bar{a}_{m}$ is part of s then $\operatorname{var}(t) \cap W \neq \emptyset$.
b) If $h \bar{a}_{m}$ is part of t then $\operatorname{var}(s) \cap W \neq \emptyset$.
- $\|S \square W\|_{2}=$ number of occurrences of symbols $h \in D C \cup F S$ in $S$.
- $\|S \square W\|_{3}=$ size of $S$ (as a multiset, counting repetitions).

Now it suffices to check that at each step of the algorithm $K_{i+1}<K_{i}$. This can be done by examining the transformation rule applied at this step, as well as the selected $(s \rightarrow t) \in S_{i}$ :

R1 Then $\left\|K_{i+1}\right\|_{1}=\left\|K_{i}\right\|_{1},\left\|K_{i+1}\right\|_{2}=\left\|K_{i}\right\|_{2}$, and $\left\|K_{i+1}\right\|_{3}<\left\|K_{i}\right\|_{3}$.

R2 Then $\left\|K_{i+1}\right\|_{1}=\left\|K_{i}\right\|_{1}$, and either

- \| $K_{i+1}\left\|_{2}=\right\| K_{i}\left\|_{2},\right\| K_{i+1}\left\|_{3}<\right\| K_{i} \|_{3}$ (if $\left.t \in \operatorname{Var}\right)$
or
- $\left\|K_{i+1}\right\|_{2}<\left\|K_{i}\right\|_{2}$ (if $t$ is not a variable).

R3 Either $\left\|K_{i+1}\right\|_{1}<\left\|K_{i}\right\|_{1}$, or $\left\|K_{i+1}\right\|_{1}=\left\|K_{i}\right\|_{1}$ and $\left\|K_{i+1}\right\|_{2}<\left\|K_{i}\right\|_{2}$
(since symbol $h$ is removed in $S_{i+1}$ ).

R4 The algorithm step is, in this case, of the form:

$$
\underbrace{s \rightarrow X, S \square W}_{K_{i}} \vdash_{\{X \mapsto s\}} \underbrace{S\{X \mapsto s\} \square W}_{K_{i+1}}, X \neq s, X \in W
$$

If $s$ is a variable then $\left\|K_{i+1}\right\|_{1}=\left\|K_{i}\right\|_{1},\left\|K_{i+1}\right\|_{2}=\left\|K_{i}\right\|_{2}$, and $\left\|K_{i+1}\right\|_{3}<\left\|K_{i}\right\|_{3}$. If $s$ is not a variable then it is a rigid pattern. Then, since $X \in W$, Lemma 7.10 ensures that

$$
\|S\{X \mapsto s\} \square W\|_{1}=\|S \square W\|_{1}<\|s \rightarrow X, S \square W\|_{1}
$$

i.e. $\left\|K_{i+1}\right\|_{1}<\left\|K_{i}\right\|_{1}$.

R5 Then $\left\|K_{i+1}\right\|_{1}=\left\|K_{i}\right\|_{1},\left\|K_{i+1}\right\|_{2}=\left\|K_{i}\right\|_{2}$, and $\left\|K_{i+1}\right\|_{3}<\left\|K_{i}\right\|_{3}$.

R6 Analogously to R4 when $s$ is not a variable: $\left\|K_{i+1}\right\|_{1}<\left\|K_{i}\right\|_{1}$.
Next we prove that if $S_{j} \neq \emptyset$ then $\operatorname{Sol}\left(S_{0} \square W_{0}\right)=\emptyset$ and hence there is no substitution $\theta$ that solves the system and the entailment does not hold. By Lemma 7.11 it is enough to show that $\operatorname{Sol}\left(S_{j} \square W_{j}\right)=\emptyset$. Since no rule transformation can be applied to this configuration, at least one of the cases below must hold. Notice that in every case the system cannot be solved.
a) $\perp \rightarrow s \in S_{j}, s \neq \perp$. Then there exists no total substitution $\theta$ such that $s \theta \sqsubseteq \perp$.
b) $h \bar{a}_{m} \rightarrow g \bar{b}_{l}$ with either $h \neq g$ or $m \neq l$. Obvious.
c) $h \bar{a}_{m} \rightarrow X, h \bar{a}_{m}$ not total, $X \in W_{j}$. Then there is no total substitution $\theta$ s.t. $X \theta \subseteq\left(h \bar{a}_{m}\right) \theta$.
d) $X \rightarrow Y, X \neq Y, X \notin W_{j}, Y \notin W_{j}$. Straightforward, from the requirement of $\operatorname{dom}(\theta) \subseteq W_{j}$ in every solution.
e) $X \rightarrow h \bar{a}_{m}, X \notin W_{j}$. As the previous case.

Finally, if $S_{j}=\emptyset$ then
$\operatorname{Sol}\left(\emptyset \square W_{j}\right)=$ Subst $_{W_{j}}{\text { where } \operatorname{Subst}_{W_{j}}=\left\{\theta \in \operatorname{Subst} \mid \operatorname{dom}(\theta) \subseteq W_{j}\right\} .}$
We consider the substitution $\theta=\theta_{1} \theta_{2} \ldots \theta_{j}$.
By Lemma 7.11, $\operatorname{Sol}\left(S_{0} \square W_{0}\right)=\left(\theta\right.$ Subst $\left._{W_{j}}\right) \upharpoonright_{W_{0}}$.
Since $i d \in \operatorname{Subst}_{W_{j}}$, $\theta i d \upharpoonright_{W_{0}}=\theta \upharpoonright_{W_{0}} \in \operatorname{Sol}\left(S_{0} \square W_{0}\right)$, and hence $\theta \upharpoonright_{W_{0}}$ can be used to prove the entailment between both basic facts.

## 8 Appendix B: Some simple Examples

### 8.1 Example 1

This is based on an example for logic programming debugging presented in [6]:

```
rev :: [A] }->[A
rev [] }->\mathrm{ []
rev (X:Xs) }\quad->\quad\mathrm{ app (rev Xs) (X:[])
app :: [A] }->[\textrm{A}]->[\textrm{A}
app[]Y }->\mathrm{ Y
app (X:Xs) Y }->\mathrm{ app Xs Y
```

The rule app. 2 is erroneous and the goal

$$
\operatorname{rev}(\mathrm{U}: \mathrm{V}:[])==\mathrm{R}
$$

yields the wrong answer $\{\mathrm{R} \mapsto \mathrm{U}:[]\}$. This is the debugging session in $\mathcal{T O Y}$ :
Consider the following facts:
1: rev ( $\mathrm{U}: \mathrm{V}:[]$ ) $\rightarrow \mathrm{U}:[]$
Are all of them valid? ([y]es / [n]o) / [a]bort) $n$
Consider the following facts:
1: $\operatorname{rev}(\mathrm{V}:[]) \rightarrow \mathrm{V}:[]$
2: app $(\mathrm{V}:[])(\mathrm{U}:[]) \rightarrow \mathrm{U}:[]$
Are all of them valid? ([y]es / [n]o) / [a]bort) $n$
Enter the number of a non-valid fact followed by a fullstop: 2 .

Consider the following facts:
1: app [] (U:[]) $\rightarrow \mathrm{U}:[]$
Are all of them valid? ([y]es / [n]o) / [a]bort) y
Rule number 2 of the function app is wrong.
Wrong instance: app (V:[]) (U:[]) $\rightarrow$ app [] (U:[])

### 8.2 Example 2

This example shows how the insertion sort algorithm can be programmed in $\mathcal{T O Y}$, taking advantage of the possibility of defining non-deterministic functions.

```
insertSort :: [A] \(\rightarrow\) [A]
insertSort [] \(\rightarrow\) []
insertSort (X:Xs) \(\rightarrow\) insert X (insertSort Xs)
\% non-deterministic function
insert :: A \(\rightarrow[\mathrm{A}] \rightarrow[\mathrm{A}]\)
insert X[]\(\rightarrow \mathrm{X}:[]\)
insert \(\mathrm{X}(\mathrm{Y}: \mathrm{Ys}) \rightarrow \mathrm{X}: \mathrm{Y}: \mathrm{Ys} \Leftarrow \mathrm{X} \leq \mathrm{Y}==\) true
insert \(X(Y: Y s) \rightarrow\) insert \(X Y s \Leftarrow X \leq Y==\) false
```

The right hand side of the rule insert. 3 should be Y :insert X Ys. Function $\leq$ can be considered predefined and hence correct. The goal

$$
\text { insertSort }(2: 1:[])==R
$$

renders the incorrect answer $\{\mathrm{R} \mapsto(2:[])\}$. The debugging session in $\mathcal{T O Y}$ is as follows:

Consider the following facts:
1: insertSort (2:1:[]) $\rightarrow$ 2:[]
Are all of them valid? ([y]es / [n]o) / [a]bort) $n$
Consider the following facts:
1: insertSort [1] $\rightarrow$ 2:[]
2: insert $2[1] \rightarrow 2:[]$
Are all of them valid? ([y]es / [n]o) / [a]bort) $n$
Enter the number of a non-valid fact followed by a fullstop: 2 .

Consider the following facts:
1: insert 2 [] $\rightarrow$ 2:[]
Are all of them valid? ([y]es / [n]o) / [a]bort) y
Rule number 3 of the function insert is wrong.
Wrong instance: insert $2(1:[]) \rightarrow$ insert 2[]$\Leftarrow 2 \leq 1==$ false

### 8.3 Example 3

Next example is a Haskell-like program computing the frontier of a given tree $T$. Function frontier is expected to traverse the leaves of $T$ from left to right, collecting them in a list. Trees are represented by constructors leaf/ 1 and node/2.

```
data tree A = node (tree A) (tree A) | leaf A
frontier :: tree A }->[\textrm{A}
frontier Tree }->\mathrm{ appendFT Tree []
```

```
appendFT \(::(\) tree A\() \rightarrow[\mathrm{A}] \rightarrow[\mathrm{A}]\)
appendFT (leaf X) \(\rightarrow(\mathrm{X}:)\)
appendFT (node Left Right) \(\rightarrow\) appendFT Right . appendFT Left
(.) \(::(\mathrm{B} \rightarrow \mathrm{C}) \rightarrow(\mathrm{A} \rightarrow \mathrm{B}) \rightarrow \mathrm{A} \rightarrow \mathrm{C}\)
(F.G) X \(\rightarrow\) F (GX)
```

The auxiliary function appendFT is intended to append the frontier of a given tree to a given list. However rule appendFT. 2 is wrong, its right hand side should be appendFT Left . appendFT Right (swapping Left and Right). For example, the goal:

$$
\text { frontier }(\text { node }(\text { leaf } 0)(\operatorname{leaf} 1))==X s
$$

computes the wrong answer $\{\mathrm{Xs} \mapsto 1: 0:[]\}$ ( instead of $\{\mathrm{Xs} \mapsto 0: 1:[]\}$ ). The debugging session in this case looks as follows:

```
Consider the following facts:
1: appendFT (node (leaf 0) (leaf 1)) }->\mathrm{ (1:).(0:)
2: (1:).(0:[] -> 1:0:[]
Are all of them valid? ([y]es / [n]o) / [a]bort) n
Enter the number of a non-valid fact followed by a fullstop: 1.
Consider the following facts:
1: appendFT (leaf 0) }->(0:
2: appendFT (leaf 1) }->\mathrm{ (1:)
Are all of them valid? ([y]es / [n]o) / [a]bort) y
Rule number 2 of the function appendFT is wrong.
Wrong instance:
appendFT (node (leaf 0) (leaf 1)) }->\mathrm{ appendFT (leaf 1) .appendFT (leaf 0)
```

The buggy function appendFT is higher-order, since it returns functions as results. Therefore the debugger asks the oracle about basic facts whose righthand sides can be higher order patterns as

$$
\text { appendFT (node (leaf 0) (leaf 1)) } \rightarrow(1:) .(0:)
$$

These questions make sense in our framework, and are crucial to detect the bug in this case.

### 8.4 Example 4

The last example is intented to compute the infinite list of all the prime numbers, by applying the classical sieve of Erathostenes method.

```
primes :: [int]
primes }->\mathrm{ sieve (from 2)
```

```
from:: int \(\rightarrow\) [int]
from \(\mathrm{N} \rightarrow \mathrm{N}:\) from (\(\mathrm{N}+1\))
sieve:: [int] \(\rightarrow\) [int]
sieve (X:Xs) \(\rightarrow\) X:filter (notDiv \(X\)) (sieve Xs)
filter \(::(\mathrm{A} \rightarrow\) bool \() \rightarrow[\mathrm{A}] \rightarrow[\mathrm{A}]\)
filter P[]\(\quad \rightarrow\) []
filter P (X:Xs) \(\rightarrow\) if P X then (X:filter P Xs)
 else filter \(P\) Xs
notDiv :: int \(\rightarrow\) int \(\rightarrow\) bool
\(\operatorname{not}\) Div \(X Y \rightarrow \bmod X Y>0\)
take :: int \(\rightarrow[\mathrm{A}] \rightarrow[\mathrm{A}]\)
take N[]\(\quad \rightarrow\) []
take \(\mathrm{N}(\mathrm{X}: \mathrm{Xs}) \quad \rightarrow \quad\) if \(\mathrm{N}>0\) then (X:take (\(\mathrm{N}-1\)) X s)
else []
```

However, due to the mistake in rule notDiv. 1 (its right-hand side should be $\bmod \mathrm{Y} X>0$ ) the goal
take 3 primes $==R$
yields the incorrect answer $\{\mathrm{R} \mapsto(2: 3: 4:[])\}$. The debugging session locates the wrong answer as follows:

Consider the following facts:
1: primes $\rightarrow$ 2:3:4:5:-
2: take 3 (2:3:4:5:-) $\rightarrow$ 2:3:4:[]
Are all of them valid? ([y]es / [n]o) / [a]bort) $n$
Enter the number of a non-valid fact followed by a fullstop: 1 .

Consider the following facts:
1: from $2 \rightarrow 2: 3: 4: 5:$
2: sieve (2:3:4:5:-) $\rightarrow$ 2:3:4:5:-
Are all of them valid? ([y]es / [n]o) / [a]bort) $n$
Enter the number of a non-valid fact followed by a fullstop: 2 .

Consider the following facts:
1: sieve (3:4:5:-) $\rightarrow$ 3:4:5:-
2: filter (notDiv 2) (3:4:5:-) $\rightarrow$ 3:4:5:-
Are all of them valid? ([y]es / [n]o) / [a]bort) $n$
Enter the number of a non-valid fact followed by a fullstop: 2.

Consider the following facts:
1: notDiv $23 \rightarrow$ true
2: filter (notDiv 2) (4:5:-) $\rightarrow 4: 5$ :
Are all of them valid? ([y]es / [n]o) / [a]bort) $n$
Enter the number of a non-valid fact followed by a fullstop: 2 .
Consider the following facts:
1: notDiv $24 \rightarrow$ true
2: filter (notDiv 2) (5:-) $\rightarrow 5$ :
Are all of them valid? ([y]es / [n]o) / [a]bort) $n$
Enter the number of a non-valid fact followed by a fullstop: 1 .
Rule number 1 of the function notDiv is wrong.
Wrong instance: notDiv $24 \rightarrow(\bmod 24)>0$
Notice the occurrence of symbol _ (representing $\perp$ ) in many basic facts of the session, approximating results of subcomputations that were not needed.


[^0]:    ${ }^{1}$ Work partially supported by the Spanish CICYT (project CICYT-TIC98-0445-C03-02/97 "TREND")
    ${ }^{2}$ Email: rafa@sip.ucm.es
    ${ }^{3}$ Email: mario@sip.ucm.es

[^1]:    4 The proof of a similar result for first-order programs can be found in [8].

[^2]:    ${ }^{5}$ Strictly speaking, a witnessing PT for this computation should have the joinability state-

[^3]:    ${ }^{6}$ Because of this replacement of $\perp$ in place of unknown values, the basic facts occurring in proof trees must be understood as approximation statements rather than equalities.

[^4]:    7 Nevertheless, the requirements on dVal's behaviour needed to ensure the semantic correction of transformed programs can be formally specified; see the proof of Theorem 4.3

[^5]:    8 Due to the presence of the auxiliary function sol, the APT computed for Tree will be not formally identical to the APT from Fig. 2.

