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Abstract

We present a declarative debugger for lazy functional logic programs with poly-
morphic type discipline. Whenever a computed answer is considered wrong by the
user (error symptom), the debugger locates a program fragment (function defining
rule) responsible for the error. The notions of symptom and error have a declara-
tive meaning w.r.t. to an intended program semantics. Debugging is performed by
searching in a computation tree which is a logical representation of the computa-
tion. Following a known technique, our tool is based on a program transformation:
transformed programs return computation trees along with the results expected by
source programs. Our transformation is provably correct w.r.t. well-typing and pro-
gram semantics. As additional improvements w.r.t. related approaches, we solve a
previously open problem concerning the use of curried functions, and we provide a
correct method for avoiding redundant questions to the user during debugging. A
prototype implementation of the debugger is available. Case studies and extensions
are planned as future work.

1 Introduction

The impact of declarative languages on practical applications is inhibited by
many known factors, including the lack of debugging tools, whose construction
is recognized as difficult for lazy functional languages. As argued in [29], such
debuggers are needed, and much of interest can still be learned from their
construction and use. Debugging tools for lazy functional logic languages [11]
are even harder to construct.
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A promising approach is declarative debugging, which starts from a compu-
tation considered incorrect by the user (error symptom) and locates a pro-
gram fragment responsible for the error. In the case of (constraint) logic
programs, error symptoms can be either wrong or missing computed answers
[26,13,6,17,28]. Declarative debugging has been also adapted to lazy functional
programming [21,22,23,27,18,20,25] and combined functional logic program-
ming [19]. All these approaches use a computation tree (CT) [19] as logical
representation of the computation. Each node in a CT represents the result of
a computation step, which must follow from the results of its children nodes
by some logical inference. Diagnosis proceeds by traversing the CT, asking
questions to an external oracle (generally the user) until a so-called buggy node
is found, whose result is erroneous, but whose children have all correct results.
The user does not need to understand the computation operationally. Any
buggy node represents an erroneous computation step, an the debugger can
display the program fragment responsible for it. From an explanatory point
of view, declarative debugging can be described as consisting of two stages,
namely CT generation and CT navigation [22].

We present a declarative debugger of wrong answers for lazy functional logic
programs with polymorphic type discipline. Following a known idea [22,20,25],
we use a program transformation for CT generation. We give a careful speci-
fication of the transformation, we show its advantages w.r.t. previous related
ones, and we describe some new techniques which allow to avoid redundant
questions to the oracle during the navigation phase.The debugger has been
implemented as part of the T OY system [14]; a prototype version can be
downloaded from http://titan.sip.ucm.es/toy/. Case studies and exten-
sions of the debugger are planned as future work.

A known extension of declarative debugging is abstract diagnosis [3,1], leading
to equivalent bottom-up and top-down diagnosis methods which do not require
error symptoms to be given in advance. In order to be effectively implemented,
abstract diagnosis uses abstract interpretation techniques to build a finite
abstraction of the intended program semantics. These methods are outside
the scope of this paper.

The rest of the paper is organized as follows: Section 2 recalls preliminary
notions and previous results about functional logic programming and declar-
ative debugging. Section 3 summarizes our new contributions w.r.t. previous
related works. Our approaches to CT generation and navigation, with detailed
explanations of the new contributions, are presented in Sections 4 and 5, re-
spectively. Conclusions and plans for future work are summarized in Section
6. Detailed proofs of the main results are included in the Appendix A, while
Appendix B includes some simple debugging sessions.
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2 Preliminaries

Functional Logic Programming (FLP for short) aims at the integration of the
best features of current functional and logic languages; see [11] for a survey.
This paper deals with declarative debugging for lazy FLP languages such
as Curry or T OY [12,14], which include pure LP and lazy FP programs as
particular cases. In this section we recall the basic facts about syntax, type
discipline and declarative semantics for lazy FLP programs. We follow the
formalization given in [9], but using the concrete syntax of T OY for program
examples.

2.1 Types, Expressions and Substitutions

2.1.1 Types and Signatures

We assume a countable set TV ar of type variables α, β, . . . and a countable
ranked alphabet TC =

⋃

n∈N TC
n of type constructors C. Types τ ∈ Type

have the syntax

τ ::= α (α ∈ TV ar) | (C τ1 . . . τn) (C ∈ TCn) | (τ → τ ′) | (τ1, . . . , τn)

By convention, C τn abbreviates (C τ1 . . . τn), “→” associates to the right,
τn → τ abbreviates τ1 → · · · → τn → τ , and the set of type variables occurring
in τ is written tvar(τ). A type τ is called monomorphic iff tvar(τ) = ∅, and
polymorphic otherwise. A type without any occurrence of “→” is called a
datatype.

A polymorphic signature over TC is a triple Σ = 〈TC, DC, FS〉, where
DC =

⋃

n∈NDC
n and FS =

⋃

n∈N FS
n are ranked sets of data constructors

resp. defined function symbols. Each n-ary c ∈ DCn comes with a principal
type declaration c :: τn → C αk, where n, k ≥ 0, α1, . . . , αk are pairwise
different, τi are datatypes, and tvar(τi) ⊆ {α1,. . . , αk} for all 1 ≤ i ≤ n
(so-called transparency property). Also, every n-ary f ∈ FSn comes with a
principal type declaration f :: τn → τ , where τi, τ are arbitrary types. In
practice, each FLP program P has a signature which corresponds to the type
declarations occurring in P . For any signature Σ, we write Σ⊥ for the result
of extending Σ with a new data constructor ⊥ :: α, intended to represent
an undefined value that belongs to every type. As notational conventions,
we use c, d ∈ DC, f, g ∈ FS and h ∈ DC ∪ FS, and we define the arity of
h ∈ DCn ∪ FSn as ar(h) = n.

2.1.2 Expressions and Patterns

In the sequel, we always suppose a given signature Σ, often not made explicit
in the notation. Assuming a countable set V ar of (data) variables X, Y, . . .
disjoint from TV ar and Σ, partial expressions e ∈ Exp⊥ have the syntax

e ::= ⊥ | X | h | (e e′) | (e1, . . . , en)
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where X ∈ V ar, h ∈ DC ∪ FS. Expressions of the form (e e′) stand for the
application of expression e (acting as a function) to expression e′ (acting as
an argument), while expressions (e1, . . . , en) represent tuples with n compo-
nents. As usual, we assume that application associates to the left and thus
(e0 e1 . . . en) abbreviates ((. . . (e0 e1) . . .) en). The set of data variables occur-
ring in e is written var(e). An expression e is called closed iff var(e) = ∅,
and open otherwise. Moreover, e is called linear iff every X ∈ var(e) has one
single occurrence in e. Partial patterns t ∈ Pat⊥ ⊂ Exp⊥are built as

t ::=⊥ | X | c t1 . . . tm | f t1 . . . tm | (t1, . . . , tn)

where X ∈ V ar, c ∈ DCn, 0 ≤ m ≤ n, f ∈ FSn, 0 ≤ m < n and ti partial
patterns for all 1 ≤ i ≤ m. They represent approximations of the values
of expressions. Following the spirit of denotational semantics [10], we view
Pat⊥ as the set of finite elements of a semantic domain, and we define the
approximation ordering v as the least partial ordering over Pat⊥ satisfying
the following properties:

• ⊥ v t, for all t ∈ Pat⊥.

• h tm v h sm whenever these two expressions are patterns and ti v si for all
1 ≤ i ≤ m.

• (t1, . . . , tn) v (s1, . . . , sn) whenever ti, si ∈ Pat⊥, ti v si for all 1 ≤ i ≤ m.

Pat⊥, and more generally any partially ordered set (shortly, poset), can be
converted into a semantic domain by means of a technique called ideal com-
pletion; see e.g. [16].

Partial patterns of the form f t1 . . . tm with f ∈ FSn and m < n serve as
a convenient representation of functions as values; see [9]. Expressions and
patterns without any occurrence of ⊥ are called total. We write Exp and
Pat for the sets of total expressions and patterns, respectively. Actually, the
symbol ⊥ never occurs in a program’s text; but it may occur in a debugging
session, as we will see.

2.1.3 Substitutions

A total substitution is a mapping θ : V ar → Pat with a unique extension θ̂ :
Exp→ Exp, which will be noted also as θ. The set of all substitutions is noted
as Subst. The set of all the partial substitutions θ : V ar → Pat⊥ is denoted as
Subst⊥ and defined analogously. We define the domain dom(θ) as the set of all
variables X s.t. θ(X) 6= X, and the range ran(θ) as

⋃

X∈dom(θ) var(θ(X)). As

usual, θ = {X1 7→ t1, . . . , Xn 7→ tn} stands for the substitution with domain
{X1, . . . , Xn} which satisfies θ(Xi) = ti for all 1 ≤ i ≤ n. By convention,
we write eθ instead of θ(e), and θσ for the composition of θ and σ, such that
e(θσ) = (eθ)σ for any e. For any subset X ⊆ dom(θ) we define the restriction
θ �X as the substitution θ′ such that dom(θ′) = X and θ′(X) = θ(X) for all
X ∈ A. We also define the disjoint union θ1∪· θ2 of two given substitutions with
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disjoint domains, as the substitution θ such that dom(θ) = dom(θ1)∪dom(θ2),
θ(X) = θ1(X) for all X ∈ dom(θ1), and θ(Y ) = θ2(Y ) for all Y ∈ dom(θ2).

The identity mapping id from V ar onto itself is called the identity substitution,
and any substitution ρ which behaves as a bijective mapping from V ar onto
itself is called a renaming. Two expressions e and e′ are called variants iff
there is some renaming ρ such that eρ = e′. The subsumption ordering over
Exp is defined by the condition e ≤ e′ iff e′ = eθ for some θ ∈ Subst. A
similar ordering can be defined over Exp⊥, and extended to work over Subst⊥
by defining θ ≤ θ′ iff θ′ = θσ for some σ ∈ Subst⊥. For any set of data
variables X , we use the notations θ ≤ θ′[X ] (resp. θ ≤ θ′[\X ]) to indicate
that Xθ′ = Xθσ holds for some σ ∈ Subst⊥ and all X ∈ X (resp. all X 6∈ X ).
Another useful notion is the approximation ordering over Subst⊥, defined by
the condition θ v θ′ iff θ(X) v θ′(X), for all X ∈ V ar.
Up to this point we have considered data substitutions. Type substitutions
can be defined similarly, as mappings θt : TV ar → Type with a unique
extension θ̂t : Type→ Type, noted also as θt. The set of all type substitutions
is noted as TSubst. Most of the concepts and notations presented above for
data substitutions (such as domain, range, composition, renaming, etc.) make
sense also for type substitutions, and we will freely use them when needed.

2.1.4 Well-typed Expressions

Inspired by Milner’s type system [15,4] we now introduce the notion of well-
typed expression. We define a type environment as any set T of type assump-
tions X :: τ for data variables, such that T does not include two different as-
sumptions for the same variable. The domain dom(T ) and the range ran(T )
of a type environment are the set of all data variables resp. type variables
that occur in T . For any variable X ∈ dom(T ), the unique type τ such that
(X :: τ) ∈ T is noted as T (X). The notation (h :: τ) ∈var Σ is used to
indicate that Σ includes the type declaration h :: τ up to a renaming of type
variables.

Type judgements (Σ, T ) `WT e :: τ are derived by means of the following type
inference rules:

VR (Σ, T ) `WT X :: τ , if T (X) = τ

ID (Σ, T ) `WT h :: τσt,

if (h :: τ) ∈var Σ⊥, σt ∈ TSubst

AP (Σ, T ) `WT (e e1) :: τ ,

if (Σ, T ) `WT e :: (τ1 → τ), (Σ, T ) `WT e1 :: τ1, for some τ1 ∈ Type

TP (Σ, T ) `WT (e1, . . . , en) :: (τ1, . . . , τn),

if (Σ, T ) `WT e1 :: τ1, . . . , (Σ, T ) `WT en :: τn
Note that the previous type inference rules can deal with polimorphic types,
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because the type declarations included in the signature Σ are interpreted as
type schemes, as seen in the inference rule ID.

We will abbreviate a sequence (Σ, T ) `WT e1 :: τ1, . . . , (Σ, T ) `WT en :: τn
as (Σ, T ) `WT en :: τn , while (Σ, T ) `WT a :: τ, (Σ, T ) `WT b :: τ will be
abbreviated as (Σ, T ) `WT a :: τ :: b.

An expression e ∈ Exp⊥ is called well-typed iff there exist some type environ-
ment T and some type τ , such that the type judgement T `WT e :: τ can be
derived. Expressions that admit more than one type are called polymorphic.
A well-typed expression always admits a so-called principal type (PT) that is
more general than any other. A pattern whose PT determines the PTs of its
subpatterns is called transparent. See [9] for more details.

2.2 Programs and Goals

2.2.1 Well-typed Programs

A well-typed program P is a set of well-typed defining rules for the function
symbols in its signature. Defining rules for f ∈ FSn with principal type dec-
laration f :: τn → τ have the form

(R) f t1 . . . tn
︸ ︷︷ ︸

left-hand side

→ r
︸︷︷︸

right-hand side

⇐ C
︸︷︷︸

condition

and must satisfy the following requirements:

(i) t1 . . . tn is a linear sequence of transparent patterns and r is an expression.

(ii) The condition C is a sequence of atomic conditions C1, . . . , Ck, where
each Ci can be either a joinability statement of the form e == e′, with
e, e′ ∈ Exp, or an approximation statement of the form d → s, with
d ∈ Exp and s ∈ Pat.

(iii) Moreover, the condition C must be admissible w.r.t. the set of variables
X =def var(f tn). By definition, this means that the set of all the
approximation statements occurring in C must admit some sequential
arrangement, say d1 → s1, · · · , dm → sm (m ≥ 0), such that the three
properties below hold:
(a) For all 1 ≤ i ≤ m: var(si) ∩ X = ∅
(b) For all 1 ≤ i ≤ m, si is linear and for all 1 ≤ j ≤ m with i 6= j

var(si) ∩ var(sj) = ∅.
(c) For all 1 ≤ i ≤ m, 1 ≤ j ≤ i: var(si) ∩ var(dj) = ∅.

(iv) There is some type environment T with domain var(R), which well-types
the definining rule in the following sense:
(a) For all 1 ≤ i ≤ n: (Σ, T ) `WT ti :: τi.
(b) (Σ, T ) `WT r :: τ .
(c) For each (e == e′) ∈ C there is some µ ∈ Type

such that (Σ, T ) `WT e :: µ :: e′.

6



Caballero and Rodŕıguez-Artalejo

(d) For each (d→ s) ∈ C there is some µ ∈ Type
such that (Σ, T ) `WT d :: µ :: s.

In the programming language T OY [14] program rules are written in a some-
what different way, namely:

(R) f t1 . . . tn
︸ ︷︷ ︸

left-hand side

→ r
︸︷︷︸

right-hand side

⇐ JC
︸︷︷︸

joinability conditions

where LD
︸︷︷︸

local definitions

In this syntax, the condition C of a program rule is split in two parts: one
part JC consisting of joinability statements e == e′, and another part LD
consisting of approximation statements d → s, which are understood as lo-
cal definitions for the variables occurring in the pattern s. This motivates
requirement (iii) above. In fact:

• Items (iii) (a), (iii) (b) require the locally defined variables to be different
from each other and away from the variables occurring in the rule’s left-hand
side, that act as formal parameters.

• Item (iii) (c) ensures that variables defined in local definition number i can
be used in local definition number j only if j > i. In particular, this means
that the local definitions cannot be recursive.

Informally, the intended meaning of a program rule like (R) above is that a
call to function f can be reduced to r whenever the actual parameters match
the patterns ti, and both the joinability conditions and local definitions are
satisfied. A condition e == e′ is satisfied by evaluating e and e′ to some
common total pattern. A local definition d → s is satisfied by evaluating d
to some possibly partial pattern which matches s. A precise formulation of
program semantics will be presented in Section 2.3.

2.2.2 A Simple Program

Below we show a simple example program, written in the concrete syntax of
the T OY language. In this syntax, local definitions d → s are written as
s ← d, and they must appear in a textual order which shows fulfilment of
the admissibility requirements explained in Section 2.2.1. T OY also allows
to use infix operators such as : to build expressions such as (X:Xs), which
is understood as ((:) X Xs). The signature of the program can be easily
inferred from the type declarations included in its text. In particular, the data
declarations give complete information about the type constructors and the
principal types of the data constructors.

% data [A] = [] | A : [A]

head :: [A] → A tail :: [A] → [A]
head (X:Xs) → X tail (X:Xs) → Xs
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map :: (A → B) → [A] → [B] twice :: (A → A) → A → A
map F [] → [] twice F X → F (F X)
map F (X:Xs) → F X : map F Xs

drop4 :: [A] → [A] from :: nat → [nat]
drop4 → twice twice tail from N → N : from N

data nat = z | suc nat

plus :: nat → nat → nat times :: nat → nat → nat
plus z Y → Y times z Y → z
plus (suc X) Y → suc (plus X Y) times (suc X) Y → plus (times X Y) X

take :: nat → [A] → [A] (//) :: A → A → A
take z Xs → [] X // Y → X
take (suc N) [] → [] X // Y → Y
take (suc N) (X:Xs) → X : take N Xs

data person = john | mary | peter | paul | sally | molly | rose | tom |
bob | lisa | alan | dolly | jim | alice

parents :: person → (person,person)
parents peter → (john,mary) parents alan → (paul,rose)
parents paul → (john,mary) parents dolly → (paul,rose)
parents sally → (john,mary) parents jim → (tom,sally)
parents bob → (peter,molly) parents alice → (tom,sally)
parents lisa → (peter,molly)

ancestor :: person → person
ancestor X → Y // Z // ancestor Y // ancestor Z

where (Y,Z) ← parents X

% data bool = true | false

related :: person → person → bool
related X Y → true <= ancestor X == ancestor Y

The data declarations for the types of lists and boolean values are included
merely as comments, since these types are predefined in T OY. Note that the
list constructors are noted as [] and : (an infix operator), as in Haskell [24].
The intended meaning of the functions should be clear from their names and
definitions. The arity of each function is always the same as the number of for-
mal parameters in its rules. In particular, drop4 (a function which eliminates
the first four elements of a given list) has arity 0, in spite of its type. The last
two functions illustrate the use of joinability conditions and local definitions.
Moreover, the functions ancestor and (//) are non-deterministic, since a call
to them with fixed parameters can return more than one result. For instance,
ancestor alan can return any of the results paul, rose, john or mary.
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Some of the program rules in this example are incorrect w.r.t. the intended
meaning of the corresponding functions. More precisely, the second rule for
times and the single rule for from are wrong; their correct versions should be:

times (suc X) Y → plus (times X Y) Y from N → N : from (suc N)

In the next section we will give a formal definition of “intended meaning”,
which is needed to prove mathematical results about the correctness of declar-
ative debugging.

2.2.3 Well-typed Goals

A well-typed goal G has the same form as a well-typed condition. In particular,
it must satisfy the admissibility requirements explained in Section 2.2.1, but
now w.r.t. the empty set of variables. A FLP system is expected to solve goals,
returning substitutions θ as computed answers. For the simple program from
Section 2.2.1, some examples of goals and answers which can be computed by
the T OY system are:

(i) The goal related alan X == true has the computed answer {X 7→ alice}
(among others).

(ii) The goal take (suc (suc z)) (from X) == Xs has a single computed answer,
namely {Xs 7→ X:X:[]}, which is wrong w.r.t. the intended meaning of the
program.

(iii) The goal head (tail (map (times N) (from X))) == Y asks for the second
element of the infinite list that contains the product of N by the consecu-
tive natural numbers starting at X. The first two solutions computed by
T OY are {N 7→ z, Y 7→ z} (which is correct) and {N 7→ suc z, Y 7→ z}
(which is wrong). This is because the buggy function times causes the
expression (times (suc z)) to return always the result z. The valid solution
{N 7→ suc z, Y 7→ suc X} expected by the user is in fact a missing answer.
Diagnosing missing answers is beyond the scope of this paper.

2.3 Program Semantics

2.3.1 The Semantic Calculus SC

In [9], a rewriting calculus called GORC was used to deduce from a given
program P those approximation and joinability statements which should be
considered as valid according to P ’s semantics. Informally, an approximation
statement e → t means that t ∈ Pat⊥ represents a partially defined value
which approximates the value of e ∈ Exp⊥; while a joinability statement
e == e′ means that e→ t, e′ → t holds for some total t ∈ Pat.
In this paper we will use the Semantic Calculus SC, a variant of GORC which
was first proposed in [2] in order to define a logically correct framework for
the declarative debugging of wrongs answers in lazy FLP languages. Formally,
SC consists of the following inference rules:
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BT e→⊥

RR X → X with X ∈ V ar

DC e1 → t1 . . . em → tm h tm ∈ Pat⊥
h em → h tm

JN e→ t e′ → t t ∈ Pat (total pattern)
e == e′

C r → s

AR+FA e1 → t1 . . . en → tn
f tn → s s ak → t (f tn → r ⇐ C) ∈ [P ]⊥,

f en ak → t t 6=⊥

In all the SC rules, e, ei ∈ Exp⊥ are partial expressions, ti, t, s ∈ Pat⊥ are
partial patterns and h ∈ DC ∪ FS. The notation [P ]⊥ in rule AR + FA
stands for the set {(l → r ⇐ C)θ | (l → r ⇐ C) ∈ P, θ ∈ Subst⊥} of
partial instances of the rules from P . The labels of the different inference
rules have the following intended meanings: BT stands for Bottom, RR for
restricted reflexivity, DC for decomposition, JN for joinability and AR + FA
for argument reduction + function application.

Notice that AR+FA is the only SC rule which depends on the given program.
It must be understood as the consecutive application of two inference steps,
whose separate specification is displayed below:

AR e1 → t1 . . . en → tn f tn → s s ak → t f ∈ FSn

f en ak → t t 6=⊥

FA C r → s (f tn → r ⇐ C) ∈ [P ]⊥
f tn → s

The rule AR+FA formalizes the steps to be performed for computing a partial
pattern t as approximated value for the function application f en ak, namely:

(i) Compute suitable partial patterns ti as approximated values for the ar-
gument expressions ei.

(ii) Apply a program rule instance (f tn → r ⇐ C) ∈ [P ]⊥, verify the
condition C, and compute a suitable partial pattern s as approximated
value for the right-hand side r.

(iii) Compute t as approximated value for s ak.

Working with partial patterns here allows to specify non-strict semantics with
the syntactic simplicity of strict semantics. In the case k > 0, f must be
a higher-order function which returns a functional value, represented by the
pattern s. In the case k = 0, the rule AR + FA can be simplified by taking
f tn → t as the conclusion of the FA step, and omitting the premise s ak → t.
We will implicitly assume this simplification all along the paper.
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Note that SC cannot apply the two inference rules AR and FA independently;
they must be always used within a combined AR + FA step. Nevertheless,
to think of the FA steps within a given SC proof is helpful, because only
such steps depend on program rules. Moreover, the conclusions of FA steps
are particularly simple approximation statements of the form f tn → s (with
ti, s ∈ Pat⊥), which will be called basic facts in the rest of the paper. Both
basic facts and local definitions are approximation statements, but they are
used for different purposes. A basic fact f tn → s asserts that the (possibly
non-linear) partial pattern s approximates the result of f tn, a call function call
with the exact number of arguments expected by f ’s arity, and with arguments
ti ∈ Pat⊥, which represent the partial approximations of f ’s actual parameters
needed to compute s as result.

The other inference rules in SC are easier to understand. In the sequel we use
the notation P `SC ϕ is used to indicate that the statement ϕ can be deduced
from the program P using the SC inference rules. For instance, taking as
P the simple program from Section 2.2.2, the following SC derivations are
possible:

(i) P `SC from X → X:⊥.

(ii) P `SC from X → X:X:⊥.

(iii) P `SC parents alice → (tom,sally).

(iv) P `SC ancestor alan → john.

(v) P `SC ancestor alan → mary.

(vi) P `SC ancestor alice → john.

(vii) P `SC ancestor alice → mary.

(viii) P `SC ancestor alan == ancestor alice.

These examples show that the semantics of approximation statements is con-
sistent with their use as local definitions within programs, but different from
the meaning of equality. For instance, from X → X:⊥ only means that the
partial value X:⊥ approximates the value of (from X), not that the value of
(from X) is equal to X:⊥. There is a formal relationship between approxima-
tion statements and the approximation ordering over Pat⊥ defined in Section
2.1.2. This and other basic properties of SC are stated in the following re-
sult, which can be proved by straightforward induction on the structure of SC
proofs 4 .

Proposition 2.1 For any given program P :
(i) For all t, s ∈ Pat⊥: P `SC t→ s iff t w s.

4 The proof of a similar result for first-order programs can be found in [8].
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Figure 1: Proof Tree in the semantic calculus SC

(ii) For all e ∈ Exp⊥, t, s ∈ Pat⊥: if P `SC e → t and t w s, then also
P `SC e→ s.

(iii) For all e ∈ Exp⊥, t ∈ Pat⊥ and θ, θ′ ∈ Subst⊥ such that P `SC eθ → t
and θ v θ′, one also has P `SC eθ′ → t with a SC proof of the same size
and structure.

(iv) For all e ∈ Exp⊥, s ∈ Pat⊥ such that P `SC e → s, one has also
P `SC eθ → sθ for any total substitution θ ∈ Subst.

2.3.2 Proof Trees Witnessing Computed Answers

We have already introduced the notion of computed answer in Section 2.2.3,
assuming the existence of some goal solving system. From now on and for the
rest of the paper, we will also assume that the goal solving system is sound
w.r.t. the semantic calculus SC. More precisely, we assume that P `SC Gθ
holds for every substitution θ which is computed as an answer for G by the
goal solving system, using program P . Note that θ must be thought as given in
advance before SC proves Gθ. By convention, the notation P `SC Gθ means
that P `SC ϕθ holds for each single atomic statement ϕ in G.

Given an atomic goal G, a particular SC deduction proving P `SC Gθ can
be always represented using a proof tree (briefly PT) with atomic statements
attached to its nodes, such that Gθ is attached to the root node and the
statement at each node can be inferred form the statements attached to its
children by means of some SC inference rule. In the case that G is not
atomic, each particular SC deduction proving P `SC Gθ can be represented
by a family of proof trees for the different deductions P `SC ϕθ corresponding
to the single atomic statements in G. By slight abuse of the language, we will
speak of a proof tree also in this case.
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take (suc (suc z)) (from X) → X:X:[ ]
��������

from X → X:X:⊥

from X → X:⊥

XXXXXXXX
take (suc (suc z)) (X:X:⊥) → X:X:[ ]

take (suc z) (X:⊥) → X:[ ]

take z ⊥ → [ ]

Figure 2: APT corresponding to the PT of Figure 1

As we have mentioned already, θ = {Xs 7→ X:X:[]} is a computed answer for
the goal G = take (suc (suc z)) (from X) == Xs w.r.t. the simple program P
form Section 2.2.2. Any proof of P `SC Gθ must include a deduction of P `SC
take (suc (suc z)) (from X) → X:X:[], which is witnessed by the PT displayed
in Fig. 1. Note that the basic facts occurring as conclusions of FA steps are
highlighted by displaying them within boxes.

2.3.3 Abbreviated Proof Trees

As we will explain in the next section, our aim is to use proof trees as computa-
tion trees for declarative debugging. To this purpose, the only relevant nodes
are those which correspond to the conclusion of FA steps. This is because all
the other inference rules in SC, being program independent, cannot give rise
to incorrect steps. For this reason, we associate to any given proof tree an
abbreviated proof tree (briefly APT), obtained by removing all those nodes of
the PT, except the root, which are not the conclusion of a FA inference. More
precisely, the APT corresponding to a given PT is constructed as follows:

• The root of the APT is the root of the given PT.

• For any node already placed in the APT, its children are the closest descen-
dants of the corresponding node in the PT which represent the conclusion
of a non-trivial FA step.

• A FA step with conclusion f tn → s is considered non-trivial iff s 6=⊥.

Note that trivial FA steps can be also ignored, because their conclusions are
always trivially valid facts of the form f tn → ⊥. In every APT, each node is
implicitly associated to the program rule instance used by the corresponding
FA step, whose conclusion is precisely the basic fact f tn → s at the node.
Note that t1, . . . , tn, s are partial patterns which cannot contain any reducible
function calls. As a concrete example, Fig. 2 shows the APT obtained from
the PT in Fig. 1.

2.3.4 Intended Models

Intended models of logic programs, as used in [6,13], can be represented as
sets of atomic formulas belonging to the program’s Herbrand base. The open
Herbrand universe (i.e. the set of terms with variables) gives rise to a more
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informative semantics [5]. In our FLP setting, a natural analogous to the open
Herbrand universe is the set Pat⊥ of all the partial patterns, equipped with
the approximation ordering v. Similarly, a natural analogous to the open
Herbrand base is the collection of all the basic facts f tn → s. Therefore,
we can define a Herbrand interpretation as a set I of basic facts fulfilling the
following three requirements for all f ∈ FSn and arbitrary partial patterns
t, tn:

(i) (f tn →⊥) ∈ I.

(ii) If (f tn → s) ∈ I, ti v t′i, s w s′ then also (f t
′
n → s′) ∈ I.

(iii) if (f tn → s) ∈ I, and θ is total substitution, then (f tn → s)θ ∈ I.

This definition of Herbrand interpretation is simpler than the one in [9], where
a more general notion of interpretation (under the name algebra) is presented.
The trade-off for this simpler presentation is to exclude non-Herbrand inter-
pretations from our consideration. In our debugging scheme we will assume
that the intended model of a program is a Herbrand interpretation I. Her-
brand interpretations can be ordered by set inclusion.

A logically correct program P should conform to its intended interpretation
I. In order to formalize this idea, we need some definitions. First, we say
that a given approximation or joinability statement ϕ is valid in the Herbrand
interpretation I iff ϕ can be proved in the calculus SCI consisting of the SC
rules BT , RR, DC and JN together with the inference rule FAI below:

FAI e1 → t1 . . . en → tn s ak → t t pattern, t 6=⊥, s pattern

f en ak → t (f tn → s) ∈ I

For instance, assuming the natural intended model I for the simple program
from Section 2.2.2, the following statements are valid in I:

(i) from X → X:suc X:⊥
(ii) take (suc (suc z)) (from X) → X:suc X:[]

(iii) ancestor alan == ancestor alice

The first of these statements even belongs to I. In general, for every basic
fact f tn → s, it can be proved that f tn → s is valid in I iff (f tn → s) ∈ I.

Next we define the denotation of expressions and the notion of model of a
given program:

• The denotation of e is the set [[e]]I = {s ∈ Pat⊥ | e→ s valid in I}.
• I is a model of P (I |= P ) iff every program rule in P is valid in I.

• A program rule l → r ⇐ C is valid in I ( I |= l → r ⇐ C) iff for any
substitution θ ∈ Subst⊥, I satisfies the rule instance lθ → rθ ⇐ Cθ.

• I satisfies a rule instance l′ → r′ ⇐ C ′ iff either I does not satisfy C ′ or
else [[l′]]I ⊇ [[r′]]I .

14
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• I satisfies an instantiated condition C ′ = ϕ1, . . . ϕk iff for i = 1 . . . k, I
satisfies ϕi.

• I satisfies d′ → s′ ∈ C ′, iff [[d′]]I ⊇ [[s′]]I . It can be shown that [[d′]]I ⊇ [[s′]]I

iff s′ ∈ [[d′]]I .

• I satisfies l′ == r′ ∈ C ′, iff [[l′]]I ∩ [[r′]]I ∩ Pat 6= ∅.
The fundamental relationship between programs and models is stated in the
following result, which is proved in [9] for a notion of model more general
than Herbrand models. A proof for the present formulation can be found in
Appendix A.

Theorem 2.2 Let P be a program and ϕ any approximation or joinability
statement. Then:
(a) If P `SC ϕ then ϕ is valid in any Herbrand model of P .
(b) MP = {f tn → s | P `SC f tn → s} is the least Herbrand model of P
w.r.t. the inclusion ordering.
(c) If ϕ is valid in MP then P `SC ϕ.

Putting together the previous theorem and the assumed soundness of the goal
solving system w.r.t. SC, we immediately obtain:

Proposition 2.3 Assume a program P and a computed answer θ for a goal
G, such that Gθ is not valid in the Herbrand interpretation I. Then, there
must be some program rule in P which is not valid in I.

This proposition predicts the existence of at least one wrong program rule
whenever a wrong computed answer is observed. Here, wrong must be under-
stood in the precise sense of being not valid in the intended model. In the case
of our simple program P , θ = {Xs 7→ X:X:[]} is a wrong computed answer for
the goal G = take (suc (suc z)) (from X) == Xs, because Gθ is not valid in the
intended model. By Proposition 2.3, some wrong rule in P must be responsi-
ble for the wrong answer. Indeed, the program rule defining the function from
is wrong.

Whenever a program rule l → r ⇐ C is not valid in the intended model
I, there must be some substitution θ ∈ Subst⊥ such that the rule instance
lθ → rθ ⇐ Cθ is not satisfied by I, which means that

(i) ϕθ is valid in I for all ϕ ∈ C.

(ii) rθ → s is valid in I for some s ∈ Pat⊥ such that (lθ → s) /∈ I.

In our example, the incorrect instance of the rule defining from is the rule
itself. Indeed, N:from N → N:N:⊥ is valid in I, but (from N → N:N:⊥) /∈ I.
This corresponds to item (ii) above, with N:N:⊥ acting as s.

For the purposes of practical debugging, Proposition 2.3 must be refined to
yield an effective method which can be used to find an incorrect instance of
a program rule, starting from the observation of a wrong computed answer.
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In the next section, we show that this can be achieved by using a declarative
debugging scheme with APTs acting as computation trees. Effective methods
to implement this approach are investigated in the rest of the paper.

2.4 Declarative Debugging

2.4.1 A Generic Declarative Debugging Scheme

The debugging scheme proposed in [19] assumes that any terminated com-
putation can be represented as a finite tree, called computation tree (briefly
CT). The root of this tree corresponds to the result of the main computation,
and each node corresponds to the result of some intermediate subcomputa-
tion. Moreover, it is assumed that the result at each node is determined by
the results of the children nodes. Therefore, every node can be seen as the
outcome of a single computation step. The debugger works by traversing a
given CT (so called CT navigation), looking for erroneous nodes. Different
kinds of programming paradigms and/or errors need different types of trees,
as well as different notions of erroneous.

A sound debugger should only report bugs that really correspond to wrong
computation steps. This consideration leads to ignore erroneous nodes which
have some erroneous children, since they do not necessarily correspond to
wrong computation steps. Following the terminology of [19], an erroneous
node with no erroneous children is called a buggy node. In order to avoid
unsoundness, the debugging scheme looks only for buggy nodes, asking ques-
tions to an oracle (generally the user) in order to determine which nodes are
erroneous. The following easy result is proved in [19]:

Proposition 2.4 A finite computation tree has an erroneous node iff it has
a buggy node. In particular, a finite computation tree whose root node is
erroneous has some buggy node.

This provides a ‘weak’ notion of completeness for the debugging scheme that
is satisfactory in practice. Usually, actual debuggers look only for a topmost
buggy node in a computation tree whose root is erroneous. Multiple bugs can
be found by reiterated application of the debugger.

2.4.2 Debugging with APTs is Logically Correct

Our debugging system is based on the declarative debugging scheme just re-
called. We assume well-typed FLP programs and goals, as described in Section
2.2. We also suppose an intended model for each program, represented as a
set of basic facts, as explained in Section 2.3.4. Computations are performed
by a goal solving system which must be sound w.r.t. the semantic calculus SC
from Section 2.3.1. Whenever a computation obtains an answer substitution θ
for a goal G using program P , we assume that an APT witnessing P `SC Gθ
is used as computation tree. An APT node is considered erroneous iff the
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statement attached to it (which is always a basic fact, except perhaps for the
root) is not valid in the intended model.

The next theorem guarantees the logical correctness of declarative debugging
with APTs:

Theorem 2.5 Assume a wrong computed answer θ, computed for the goal G
using program P , such that Gθ is not valid in the intended model. Consider
any APT witnessing P `SC Gθ, which must exist due to soundness of the
goal solving system w.r.t. SC. Then, declarative debugging using the APT as
computation tree has the following two properties:

(a) Completeness: navigating the APT will find a buggy node.

(b) Soundness: every buggy node in the APT points to an instance of a
program rule which is incorrect w.r.t. the intended model.

Proof.
Item (a) follows immediately from Proposition 2.4, provided that the search
strategy used to navigate the tree does not miss existing buggy nodes. To prove
item (b), assume that the intended model is I, the APT is apt, and the PT
which has been abbreviated to obtain apt is pt. Now consider any given buggy
node in apt. The corresponding node in pt must contain a basic fact f tn → s
which is not valid in I and has been inferred as the conclusion of a FA inference
step using some instance of a program rule, say (f tn → r ⇐ C) ∈ [P ]⊥.
Therefore, the children of f tn → s in pt correspond to the statement r → s
and all the statements in C. In apt, the children of f tn → s are not necessarily
these; but since apt has been built as the abbreviated form of pt, it happens
that r → s and C can be inferred from the children of f tn → s in apt by
means of SC inferences which are different from FA and therefore correct in
every Herbrand interpretation. Moreover, all the children of f tn → s in apt
are valid in I, because they are the children of a buggy node. With this we
can conclude that C and r → s are valid in I, while f tn → s is not; which
means that the program rule instance (f tn → r ⇐ C) ∈ [P ]⊥ is incorrect in
I. 2

This theorem provides an effective version of Proposition 2.3 as well as a
logical interpretation of computation trees. To the best of our knowledge, this
is missing in other related approaches to declarative debugging of lazy FP and
FLP programs [21,22,23,27,18,20,25].

As a concrete example, consider again the PT shown in Fig. 1 and the cor-
responding APT shown in Fig. 2. As we have said before, PT witnesses the
computation of the wrong answer θ = {Xs 7→ X:X:[]} for the goal

G = take (suc (suc z)) (fromX) == Xs

using the simple program from Section 2.2.2 5 . In Fig. 2, the statements at

5 Strictly speaking, a witnessing PT for this computation should have the joinability state-
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erroneous nodes are displayed in bold letters, and the only buggy node appears
surrounded by a double box. In this case, the reasoning of Theorem 2.5 leads
to the incorrect program rule instance used by the FA step at the buggy node,
which is from N → N:from N.

In a previous work [2] we have presented a method to extract the APT which
witnesses a particular computation from a formal representation of the com-
putation in a lazy narrowing calculus. This theoretical result depends on a
particular formalization of narrowing, and does not provide a direct way to
implement a debugging tool for existing FLP systems. In the rest of this pa-
per we propose more effective methods for the generation and navigation of
APTs, which allow to implement a working debugging tool.

3 Problems and Contributions

In this short section we summarize the main contributions of this paper to the
two stages of declarative debugging, namely CT generation and CT navigation.

3.1 CT Generation

In the context of lazy FP and FLP, two main ways of constructing CT’s have
been proposed. The program transformation approach [22,20,25] gives rise
to transformed programs whose functions return CTs along with the origi-
nally expected results. The abstract machine approach [21,22,23,27] requires
lower level modifications of the language implementation. Although the sec-
ond approach can result in a better performance, we have adopted the first
one because we find it more portable and better suited to a formal correct-
ness analysis. With respect to other papers based in the transformational
approach, we present two main contributions, described below.

3.1.1 Curried Functions

Roughly, all transformational approaches transform the functions defined in
the source program to return pairs (res, ct) consisting of a computed result
and a CT. From the viewpoint of types, the transformation of a n-ary function
f ∈ FSn looks as follows:

f :: τ1 → · · · → τn → τ ⇒ fT :: τT1 → · · · → τTn → (τT , cTree)

where cTree is a datatype for representing CTs, and τTi resp. τT are suitable
transformations of the types τi resp. τ . This type transformation amounts to
the identity in the case of datatypes (i.e., types with no occurrence of the type
constructor “→”), but it becomes relevant in the case of higher-order (briefly,
HO) types, whose translation involves the type cTree. For instance, the types

ment take (suc (suc z)) (from X) == X:X:[] at the root; but the PT from Fig. 1 represents
the interesting part of the deduction.
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of the functions plus, drop4 and map from the simple program in Section 2.2.2,
whose respective arities are 2, 0 and 2, are translated as shown below. The
type of drop4 has the form (τT , cT ree) because drop4 has been declared as a
nullary function, to be defined by parameterless program rules.

plus :: nat → nat → nat ⇒ plusT :: nat → nat → (nat, cTree)

drop4 :: [A] → [A] ⇒ drop4T :: ([A] → ([A], cTree),cTree)

map :: (A →B) → [A] → [B] ⇒ mapT :: (A → (B,cTree)) → [A] → ([B],cTree)

As pointed out in [20,25], this approach can lead to type errors when curried
functions are used to compute results which are taken as parameters by other
functions. For instance, (map drop4) is well-typed, but the näıve translation
(mapT drop4T ) is ill-typed, because the type of drop4T does not match the
type expected by mapT for its first parameter. More generally, the type of the
result returned by fT when applied to m arguments depends on the relation
between m and f ’s arity n. For example, (map (plus z)) and (map plus) are
both well-typed. However, when translating näıvely, (mapT (plusT z)) remains
well-typed, while (mapT plusT ) becomes ill-typed.

As a possible solution to this problem, the authors of [20] suggest to modify
the translation in such a way that a curried function of arity n > 0 always
returns a result of type (τT , cTree) when applied to its first parameter. The
type translation of the function plus following this idea yields plusT :: nat →
(nat → (nat, cTree), cTree).

However, as noted in [20], such a transformation would cause transformed
programs to compute inefficiently, producing CTs with many useless nodes.
Therefore, the authors of [20] wrote: ”An intermediate transformation which
only handles currying when necessary is desirable. Whether this can be done
without detailed analysis of the program is under investigation”.

Our program transformation solves this problem by translating a curried func-
tion f of arity n, into n curried functions fT0 , . . . , f

T
n−2, f

T with respective
arities 1, 2, . . .n − 1, n, and suitable types. Function fTm (0 ≤ m ≤ n − 2)
is used to translate occurrences of f applied to m parameters, while fT trans-
lates occurrences of f applied to n − 1 parameters. For instance, (map plus)
is transformed into (map T plus0

T ), using the auxiliary function plus0
T :: nat

→ (nat → (nat,cTree), cTree). As we will see formally in Section 4, the appli-
cation of a n-ary function f to n or more parameters must be translated with
the help of local definitions, a technique already used in [22,20,25].

We provide a similar solution to deal with partial application of curried data
constructors, which can also cause type errors in the näıve approach (think
of (twiceT suc), as an example). As far as we know, the difficulties with cur-
ried constructors have not been addressed previously. Our approach certainly
increases the number of functions in transformed programs, but the extra
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functions are used only when needed, and inefficient CTs with useless nodes
can be avoided. A detailed specification of the transformation, dealing both
with types and with program rules, is presented in Section 4.

3.1.2 Correctness Results

Our program transformation preserves polymorphic well-typing (module the
type transformation τ 7→ τT ) as well as the program semantics formalized
in Section 2.3. Under some minimal and natural assumptions about the goal
solving system, we also prove that translated programs compute APTs which
can be used for logically correct declarative debugging, as we have seen in
Section 2.4.2, Theorem 2.5.

These correctness results are presented in Section 4. To the best of our knowl-
edge, previous related papers [22,20,25] give no correctness proof for the pro-
gram transformation. The author of [25], who is aware of the problem, just
relies on intuition for the semantic correctness. He mentions the need of a
formalized semantics for a rigorous proof. As for type correctness, it is closely
related to the treatment of curried functions, which was deficient in previous
approaches.

3.2 CT Navigation

In order to be a really practical tool, a declarative debugger should keep the
number of questions asked to the oracle as small as possible. Our debugger
uses a decidable and semantically correct entailment between basic facts to
maintain a consistent and non-redundant store of facts known from previously
answered questions. Redundant questions whose answer is entailed by stored
facts can be avoided. In Section 5 we define the entailment relation, proving
its decidability and discussing its use during CT navigation.

4 Generation of CTs by Program Transformation

In this section we present the program transformation used by our debugger
and we prove its correctness. Roughly, a program P is converted into a new
program P T , where function calls return the same results P would return,
but paired with CTs. Formally, P T is obtained by transforming the signature
Σ of P into a new signature ΣT , introducing definitions for certain auxiliary
functions, and transforming the function definitions included in P . Let us
consider these issues one by one.

4.1 Representing Computation Trees

A transformed program always includes the constructors of the datatype cTree,
used to represent CTs and defined as follows:
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data cTree = void | cNode funId [arg] res rule [cTree]

type arg, res = pVal

type funId, pVal, rule = string

A CT of the form (cNode f ts s rl cts) corresponds to a call to the function
f with arguments ts and result s, where rl indicates the function rule used to
evaluate the call, and the list cts consists of the children CTs corresponding to
all the function calls (in the local definitions, right-hand side and conditions of
rl) whose activation was needed in order to obtain s. Due to lazy evaluation,
the main computation may demand only partial approximations of the results
of intermediate computations. Therefore, ts and s stand for possibly partial
values, represented as partial patterns; and (f ts → s) represents the basic
fact whose validity will be asked to the oracle during debugging, as explained
in Section 2.4. As for void, it represents an empty CT, returned by calls to
functions which are trusted to be correct (in particular, data constructors and
the auxiliary functions introduced by the translation). Finally, the definition
of arg, res, funId, pVal and rule as synonyms of the type of character strings is
just a simple representation; other choices are possible. In fact, our current
prototype debugger uses more structured representations instead of strings. In
particular, values of type rule in our debugging system represent instances of
program rules, so that the wrong program rule instances associated to buggy
nodes can be presented to the user.

4.2 Transforming Program Signatures

For every n-ary function f :: τ1 → . . . → τn → τ occurring in P , P T must
include an (m+ 1)-ary auxiliary function fTm for each 0 ≤ m < n− 1, as well
as an n-ary function fT , with principal types:

fTm :: τT1 → . . .→ τTm+1 → ((τm+2 → . . .→ τn → τ)T , cTree)

fT :: τT1 → . . .→ τTn → (τT , cTree)

Similarly, for each n-ary data constructor c :: τ1 → . . .→ τn → τ occurring in
P , P T must keep c with the same principal type, and include new (m+1)-ary
auxiliary functions cTm (0 ≤ m < n), with principal types:

cTm :: τT1 → . . .→ τTm+1 → ((τm+2 → . . .→ τn → τ)T , cTree)

Note that cTm are not data constructors in the translated signature. Defining
rules for them will be presented below. The principal types declared above for
the function symbols in the transformed signature depend on a type transfor-
mation. Any type τ in P ’s signature is transformed into another type τT in
P T ’s signature, which is recursively defined as follows:
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αT = α (α ∈ TV ar)

(C τn)T = C τTn (C ∈ TCn)

(µ→ ν)T = µT → (νT , cTree)

Observe that τT equals τ whenever τ is a dataype with no occurrences of the
higher-order type constructor “→”. Since this is the case for the principal
types of arguments and results of data constructors c, the auxiliary functions
cTm can be also declared as

cTm :: τ1 → . . .→ τm+1 → ((τm+2 → . . .→ τn → τ)T , cTree)

In addition to the constructors and functions obtained by transforming those
occurring in P ’s the signature of P T always includes some additional auxiliary
function symbols, which will be introduced in Section 4.4 below.

4.3 Defining Auxiliary Functions

Each auxiliary function fTm expects m + 1 arguments and returns a partial
application of fTm+1 paired with a trivial CT. Exceptionally, fTn−2 returns a
partial application of fT . The auxiliary functions cTm are defined similarly,
except that cTn−1 returns a value built with the data constructor c.

fT0 X1 → (fT1 X1, void) cT0 X1 → (cT1 X1, void)

fT1 X1X2 → (fT2 X1X2, void) cT1 X1X2 → (cT2 X1X2, void)

. . . . . .

fTn−2Xn−1 → (fT Xn−1, void) cTn−1Xn → (c Xn, void)

4.4 Transforming Function Definitions

Each program rule f t1 . . . tn → r ⇐ JC whereLD occurring in P is trans-
formed into a corresponding program rule for fT in P T . We can assume
that JC consists of joinability conditions li == ri and LD consists of local
definitions sj ← dj written in a textual order which fulfills the admissibility
properties required for the conditions of program rules (see Section 2.2.1).
Then the transformed program rule is constructed as follows:
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fT tT1 . . . tTn → (R, T )⇐ . . . LSi == RSi . . .

where{ . . .

sTj ← dTj ;
. . .

LSi ← lTi ;
RSi ← rTi ;

. . .

R ← rT ;
T ← cNode ”f” [dV al tT1 , . . . , dV al t

T
n ] (dV al R) ”f.p” (clean [ ])} ↓

Some additional explanations are needed at this point:

- tTl , sTj , dTj , lTi , rTi and rT refer to an expression transformation (defined
below) which converts any e :: τ of signature Σ into eT :: τT of signature
ΣT .
-R, T , LSi, RSi are new fresh variables, and p is an index which represents
the position of the program rule, in textual order.
-The notation {. . .} ↓ refers to a transformation of the local definitions ex-
plained below.
-dVal :: A→ pVal is an auxiliary impure function without declarative meaning,
very similar to dirt in [20,25]. Any call (dVal a) (read: “demanded value of
a”) returns a representation of the partial approximation of a’s value which
was needed to complete the top level computation. The debugger’s imple-
mentation can compute this from the internal structure representing a at the
end of the main computation, replacing all occurrences of suspended function
calls by "_", which represents the undefined value ⊥ 6 . Moreover, dVal also
renames all the identifiers of auxiliary functions fTm resp. cTm into f resp. c.
In this way, the patterns representing computed results are translated back to
the original signature.

The expression transformation e 7→ eT is defined by recursion on e’s syntac-
tic structure. The idea is to transform the (possibly partial) applications of
functions and constructors within e, using functions from the transformed sig-
nature. In order to ensure eT :: τT whenever e :: τ , we use two auxiliary
application operators:

@0 :: (β,cTree) → β

@0 F → R where {(R,T) ← F}

(@) :: (α → (β,cTree)) → α → β

F @ X → R where {(R,T) ← F X}
These are used within eT at those points where the application of a function
from the translated signature (to a number of parameters equal to its arity)
is expected to return a value paired with a CT. Applications of higher-order

6 Because of this replacement of ⊥ in place of unknown values, the basic facts occurring in
proof trees must be understood as approximation statements rather than equalities.
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variables are treated in a similar way. Formally:

(X a1 . . . ak)
T = (. . . (X@ aT1 )@ . . . )@aTk (X ∈ V ar, k ≥ 0)

(c e1 . . . em)T = cTm e
T
1 . . . e

T
m (c ∈ DCn, m < n, n > 0)

(c e1 . . . en)T = c eT1 . . . e
T
n (c ∈ DCn, n ≥ 0)

(f a1 . . . ak)
T = (. . . ((@0 f

T )@ aT1 )@ . . . )@aTk (f ∈ FS0, k ≥ 0)

(f e1 . . . em)T = fTm e
T
1 . . . e

T
m (f ∈ FSn, n > 0,m < n− 1)

(f e1 . . . en−1 a1 . . . ak)
T = (. . . ((fT eT1 . . . e

T
n−1) @ aT1 ) @ . . .)@aTk

(f ∈ FSn, n > 0, k ≥ 0)

From the previous specification it is easy to see that the translation tT of a
pattern t does not have any occurrences of the auxiliary application operators
and is in fact another pattern, from which t can be univocally recovered.
Coming back to the construction of translated program rules, we see that
the translated expressions tTl , sTj , dTj , lTi , rTi and rT are intended to ensure
well-typing, but seemingly ignore CTs. In particular, the local definition of
T renders a CT whose root has complete information about the arguments,
result and program rule corresponding to a particular call to function f , but
the list of children CTs seems to be empty. In fact this is not the case, because
the local definitions {. . .} are further translated into {. . .} ↓, which means that
the normal form obtained by applying the transformation rules AP0 and AP1

defined below, with a leftmost-innermost strategy. The notation e[e1] must be
undestood as an expression containing in occurrence of the subexpression e1
in some context.

• AP0:
{. . . ; p← e[@0 fun]; . . . T ← cNode . . . (clean lp)} −→
{. . . ; (R′, T ′)← fun; p← e[R′]; . . . T ← cNode . . . (clean (lp++[(dVal R′, T ′)]))}

• AP1:
{. . . ; p← e[fun@ arg]; . . . T ← cNode . . . (clean lp)} −→
{. . . ; (R′, T ′)← fun arg; p← e[R′]; . . . T ← cNode . . . (clean (lp++[(dVal R′, T ′)]))}

In both transformations, “++” stands for the list concatenation function. R′

and T ′ must be chosen as new fresh variables, and p is a the pattern in the
translated signature, occurring as lefthand side of a local definition whose
righthand side includes a leftmost-innermost occurrence of an application op-
erator (@0 fun) or (fun@ arg) in some context. Because of the innermost
strategy, we can claim:

(i) AP0 always finds fun = gT , for some nullary function symbol g ∈ FS0.

(ii) AP1 always finds arg = sTm for some pattern sm in P ’s signature; and
either fun is a variable, or else fun = gT sT1 . . . s

T
m−1 for some g ∈

FSm, m > 0 and some patterns s1, · · · , sm−1 in P ’s signature.
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Each application of the AP transformations eliminates the currently leftmost-
innermost occurrence of an application operator, while introducing a new local
definition for the result R′ and the computation tree T ′ coming from that
application, and adding the pair (dVal R′, T ′) to the list of children of T . The
innermost strategy ensures that no application operators occur in the new
local definition. Since the initial number of application operators is finite,
the process is terminating and the normal form always exists. When the
AP transformations terminate, no application operators remain. Therefore,
@0 and @ do not occur in transformed programs. All the occurrences of
“++” within the righthand side of T ’s local definition can be removed, by
performing a simple partial evaluation by unfolding w.r.t. the usual definition
of list concatenation. This leads to a list lp :: [(pVal, cTree)] including as many
CTs as application operators did occur in the local definitions, each of them
paired with a partial result. Finally, the call to the auxiliary function clean
is introduced, in order that the execution of (clean lp) at run time can build
the ultimate list of children CTs. The definition of clean is such that all the
pairs (pv,ct) in lp such that pv represents ⊥ or ct is void are ignored, thus
avoiding useless nodes to occur in the final CT. The program rules defining
clean and some other auxiliary functions, shown below, must be included in
any transformed program.

clean :: [(pVal, cTree)] → cTree

clean [] → []

clean ((R,T) : Rest) → clean Rest <= irrelevant (R,T) == true

clean ((R,T) : Rest) → T : clean Rest <= irrelevant (R,T) == false

irrelevant :: (pVal, cTree) → bool

irrelevant (R,T) → true <= isBottom R == true

irrelevant (R,T) → isVoid T <= isBottom R == false

isBottom :: pVal → bool

isBottom R → if R == ” ” then true else false

isVoid :: cTree → bool

isVoid void → true

isVoid (cTree Fun Args Result Rule Children) → false

Note that the definition of isBottom uses a conditional expression, a language
feature which is supported by T OY, although not included in the formal
presentation of FLP programs given in Section 2.1.2. This completes the
description of the program transformation, except for the behaviour of dVal.
This impure function cannot be defined by ordinary program rules, and it must
be provided at some lower, implementation dependent level 7 . In our current

7 Nevertheless, the requirements on dVal’s behaviour needed to ensure the semantic cor-
rection of transformed programs can be formally specified; see the proof of Theorem 4.3
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debugging tool for the FLP language T OY, the fuction dVal is implemented
in Prolog, as the rest of the T OY system. The final form of a transformed
program rule is shown below.

fT tT1 . . . tTn → (R, T )⇐ . . . LSi == RSi . . .

where{ . . .

(Rk, Tk) ← callTk ;
. . .

sTj ← wTj ;
. . .

LSi ← uTi ;
RSi ← vTi ;

. . .

R ← vT ;
T ← cNode ”f” [dV al tT1 , . . . , dV al t

T
n ] (dV al R) ”f.p”

(clean [· · · , (dV al Rk, Tk), · · ·])}

Here, the transformed patterns tTl and sTj are as explained before, while the
transformed patterns wTj , uTi , vTi and vT are which remains from the trans-
formed expressions dTj , lTi , rTi and rT upon termination of the AP transfor-
mations. Moreover, the local definitions (Rk, Tk) ← callTk have been created
by the AP transformations, applied in leftmost-innermost order. For each k,
callTk is the transformed form of a function call callk in the original signature,
which must have one of the two following forms:

(i) callk = g sm, for some g ∈ FSm, m ≥ 0 and some patterns sm.

(ii) callk = F s, for some variable F and some pattern s.

Note that the possible forms of callk correspond to the possible forms of fun
and arg when the AP transformations are applied, as explained above.

4.5 An Example

Below we show part of the type declarations and program rules resulting from
the transformation of the simple program from Section 2.2.2. For the sake of a
simpler concrete syntax, we write “f ′” instead of “fT ” for translated symbols.

times’ :: nat → nat → (nat, cTree)

times’ (suc X) Y → (R,T)

where (M,T1) ← times’ X Y

(N,T2) ← plus’ X M

R ← N

T ← cNode ”times” [dVal (suc X), dVal Y] (dVal R)

”times.2” (clean [(dVal M,T1), (dVal N,T2)])
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twice’ :: (A → (A, cTree)) → A → (A, cTree)

twice’ F X → (R,T)

where (Y,T1) ← F X

(Z,T2) ← F Y

R ← Z

T ← cNode ”twice” [dVal F, dVal X] (dVal R)

”twice.1” (clean [(dVal Y,T1), (dVal Z,T2)])

drop4’ :: ([A] → ([A], cTree), cTree)

drop4’ → (R,T)

where (F,T1) ← twice’ twice0’ tail’

R ← F

T ← cNode ”drop4” [] (dVal R)

”drop4.1” (clean [(dVal F,T1)]))

Note that the transformation of the program rule defining drop4 starts by
transforming twice twice tail into twiceT twiceT0 @ tailT , which gives rise to
(F, T1)← twiceT twiceT0 tailT by application of an AP transformation. Careful
examination of this example is left as an exercise for the reader.

4.6 Transforming Goals

The debugging process can be started whenever some answer θ computed
for a goal G is considered erroneous by the user. For the sake of a simpler
presentation, we will assume that G includes no local definitions. This is no
serious limitation in practice. In order to build a suitable CT for the navigation
phase, an auxiliary function definition

sol Xn = true ⇐ G

is considered, whose translation is automatically added to the transformed
program. Here, Xn are the variables occurring in G. Due to the assumption
that G includes no local definitions, all these variables are allowed to occur
as formal parameters of sol. Using the answer substitution θ which has been
already computed by the goal solving system, the debugger can build the
transformed goal

solT Xnθ
T == (true, Tree)

As we will prove in Section 4.8, solving this goal with the transformed program
leads to a solution which binds no variables in Xnθ

T and binds Tree to an APT
witnessing P `SC Gθ. According to Theorem 2.5, navigating this APT leads
to some buggy node which points to an incorrect instance of program rule in
P .

In the case of our simple program from Section 2.2.2, a user could decide to
activate the debugger after observing the wrong computed answer θ = {Xs 7→
X:X:[]} for the goal
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take (suc (suc z)) (from X) == Xs

In this situation, the debugger would use the transformed program to solve
the goal

solT X (X:X:[]) == (true,Tree)

This would bind the variable Tree to an APT essentially equivalent to the one
shown in Fig. 2 8 , and debugging would proceed by navigating this APT.

4.7 Program Flattening

As a convenient technical device for proving some of the results in the coming
section, we introduce another program transformation, called flattening. In-
tuitively, flattening a program means to eliminate nested function calls both
in the right-hand sides and in the conditions of function defining rules. This
can be done by introducing new local definitions.

The idea of flattening is not a new one. It played an important rôle in the
operational semantics of K-LEAF, a pioneering functional logic language [7].
In our present context, flattening becomes important because of its close re-
lationship to the transformation of program rules described above in Section
4.4. In fact, flattening a program rule for f ∈ FSn whose transformed form is
as shown at the end of Section 4.4 yields, by the definition, the following:

f t1 . . . tn → R⇐ . . . LSi == RSi . . .

where{ . . .

Rk ← callk;
. . .

sj ← wj ;
. . .

LSi ← ui;
RSi ← vi;

. . .

R ← v

}

Flattening a whole program P is defined as the result of flattening one by
one all the function defining rules belonging to P , which yields an intuitively
equivalent program PF with the same signature, called the flat form of P . For
instance, the flat form of our simple program P from section 2.2.2 contains,
among others, the program rules shown below. Their correspondence with the
transformed program rules in P T shown in Section 4.4 should be obvious.

8 Due to the presence of the auxiliary function sol, the APT computed for Tree will be not
formally identical to the APT from Fig. 2.
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times :: nat → nat → nat

times (suc X) Y → R

where M ← times X Y

N ← plus X M

R ← N

twice:: (A → A) → A → A

twice F X → R

where Y ← F X

Z ← F Y

R ← Z

drop4 :: [A] → [A]

drop4 → R

where F ← twice twice tail

R ← F

Note that programs in flat form only use flat function calls of the form
(f t1 . . . tn), with f ∈ FSn and t1, . . . , tn patterns. Therefore proofs built
in the semantic calculus SC do not need the inference rule AR when the
program and the statement to be deduced are flat. This is because all the
arguments of function calls met in the course of such a proof will necessarily
be patterns. Let FSC be the variant of SC consisting of all the inference rules
specified in Section 2.3.1, but with FA in place of AR + FA. The following
result guarantees that the semantics of functions, as specified by the calculus
SC, is preserved by flattening.

Theorem 4.1 For every program P , for all f ∈ FSn, and for all partial
patterns tn, s ∈ Pat⊥: P `SC f tn → s holds iff PF `FSC f tn → s. Moreover,
the same witnessing APT can be chosen for both deductions.

Proof Idea
This follows from a more general result which relates a SC deduction of the
form P `SC e → s (with e ∈ Exp⊥, s ∈ Pat⊥) to a corresponding FSC
deduction using the flat form of e. Building the proof relies on the recursive
definition of a flattening transformation of expressions and program rules.
In fact, this can be used as an alternative way to define the program rule
transformation presented in Section 4.4. Details are left outside of the scope
of this paper. 2

4.8 Correctness Results

Now we are ready to present the three main results about the correctness of
our program transformation, whose proofs are given in Appendix A. The first
result concerns the type discipline. It guarantees that the debugger does not
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need to perform any type checking/inference before entering the CT generation
phase, which proceeds as explained in Section 4.6.

Theorem 4.2 The transformation P T of a well-typed program P is always
well-typed.

The second result says that the semantics of any transformed function fT in
a transformed program P T is the same as the semantics of f in the original
program P , except that calls to fT also return APTs, represented as values
of type cTree.

Theorem 4.3 Consider any n-ary function f and arbitrary partial patterns
tn, t in the signature of a program P .

(i) Assume P `SC f tn → t and let apt be a witnessing APT for this
deduction. Then P T `FSCT fT tTn → (tT , ct), where ct :: cTree is a total
pattern which represents apt.

(ii) Assume P T `FSCT fT tTn → (tT , ct). Then P `SC f tn → t.

Proof Idea.
Due to Theorem 4.1, the SC deduction P `SC f tn → t can be replaced
by the FSC deduction PF `FSC f tn → t in the statement of the theorem.
Intuitively, this makes the result plausible, due to the close correspondence
between flat program rules and transformed program rules. The notation
FSCT refers to a variant of the flat semantic calculus FSC, which must
be used for deductions with transformed programs. FSCT consists of the
inference rules of SC but with FA in place of AR+FA and with the addition
of special metarules which formalize the behaviour of the impure function
dVal. Full details are given in Appendix A. 2

Our last result shows that the goal transformation described in Section 4.6 is
indeed suitable to generate correct APTs. Before presenting the theorem, we
formalize certain assumptions about the undelying goal solving system. The
theorem holds for every goal solving system which satisfies these assumptions.

Definition 4.4

(a) A goal solving system GS is assumed to produce an ordered sequence of
computed answers θi for a given program P and a goal G. Each com-
puted answer θi is assumed to be a substitution of patterns for variables
occurring in G. We write G 
GS,P θ to indicate that θ is one of the
answers for G computed by GS with program P . Similarly, we write
G 
1st

GS,P θ to indicate that θ is the first answer for G computed by GS
using program P .

(b) Given a goal solving system GS, we say
(b.1) GS is stable iff for every program P and every goal G without local
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definitions: if G 
GS,P θ then sol Xnθ == true 
1st
GS,Psol

id, where

Psol = P ∪· {sol Xn → true⇐ G}, with a new n-ary function symbol
sol and Xn = var(G).

(b.2) GS is sound iff for every program P and goal G, if G 
GS,P θ then
P `SC Gθ.

(b.3) GS is weakly complete iff for every program P , for any p :: τn → bool
and for all patterns tn in P ′s signature: If p tn == true 
1st

GS,P id,
and apt is the APT for P `SC p tn → true witnessing the previous
computation (which exists by soundness) and P T 
 FSCT pT tT n →
(true, ct) where ct represents apt, then pT tT n == (true, T ) 
1st

GS,PT

{T 7→ ct}.
(b.4) GS is reasonable iff GS is stable, sound and weakly complete.

The items of the previous definition are intended as minimal requirements that
should be fulfilled by goal solving systems based on lazy narrowing strategies.
Weak completeness is a sensible assumption because of Theorem 4.3 (i), and
stability can be guarenteed by treating all the variables occurring in Xnθ as
constants when solving a goal sol Xnθ == true.

We believe that the goal solving system underlying T OY [14] is reasonable in
the technical sense of Definition 4.4 but presently we do not intend to support
our belief by a mathematical proof. It would be a very hard task, as any
formal correctness proof for a complex software system.

Now we are in a position to state:

Theorem 4.5 Let G be a goal with variables Xn and without local defini-
tions. Assume that θ has been computed as an answer for G using program P .
Consider the program Psol obtained by adding to P the new auxiliary function
definition sol Xn = true⇐ G. If the goal solving system is reasonable, solving
the transformed goal solT Xnθ

T == (true, Tree) with the transformed program
P Tsol succeeds. Moreover, the first computed answer binds no variables in Xnθ

T

and binds Tree to an APT wittnessing P `SC Gθ.

A proof of this theorem can be found in Appendix A. Although the result
holds for any computed answer θ, its interest for debugging is restricted to
the case that θ is seen by the user as a wrong computed answer. In this case,
the debugger can find an incorrect program rule by navigating the APT, as
explained in Section 4.6.

5 Navigating the CTs by Oracle Querying

In this Section we present a technique used by our debugger to avoid redundant
questions to the oracle during the navigation phase. We also present a simple
example of debugging session. More examples can be found in Appendix B.

Once the CT associated to a wrong answer has been built (as described in
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Section 4.6), navigation performs a top-down traversal, asking the oracle about
the validity of the basic facts associated to the visited nodes (except for the
root, which is known to be erroneous in advance). For the sake of practical
usefulness, it is important to ensure that questions asked to the oracle are as
few and as simple as possible.

The second condition - simplicity - comes along with our choice of APTs
as CTs, since basic facts are the minimal pieces of information needed to
characterize the intended model of a program, as we have seen in Section
2.3.4. To reduce the number of questions, the only possibility considered in
related papers is to avoid asking repeated questions. As an improvement, we
present an entailment relation between basic facts, and we show that it can
be used to avoid redundant questions which can be deduced from previous
answers.

Our notion of entailment is based on the approximation ordering v defined in
Section 2.1.2. By definition, a basic fact f tn → t entails another basic fact
f sn → s (written as f tn → t � f sn → s) iff there is some total substitution
θ ∈ Subst such that

t1θ v s1, . . . , tnθ v sn, s v tθ

Due to Proposition 2.1 item (i), we can also write these conditions as:

s1 → t1θ, . . . , sn → tnθ, tθ → s

Entailment between basic fact can be decided by means of the next algorithm.

Algorithm
Let f tn → t and f sn → s be two basic facts which share no common variables.
In order to decide whether f tn → t � f sn → s we define a system of
transformations, somewhat similar to those used in Martelli and Montanari’s
unification algorithm. The transformations are applied to a multiset S of
approximation statements a → b, with a, b ∈ Pat⊥, together with a set of
variables W . Both are represented together in the form: S2W , which we will
call a configuration from now on.

We say that Sθ holds, with θ ∈ Subst, iff for all s→ t ∈ S, tθ v sθ. The set of
solutions of a configuration S2W is defined as the set of total substitutions
over variables in W for which all the approximation statements in S do hold,
i.e.: Sol(S2W ) = {θ ∈ Subst | dom(θ) ⊆W, ran(θ) ⊆ Pat, Sθ holds }.
The purpose of the algorithm is to find some solution for the initial configura-
tion S02W0 with S0 = s1 → t1, . . . , sn → tn, t→ s and W0 = var(f tn → t),
i.e. we indicate that only variables in f tn → t can be instantiated. At each
step of the algorithm a configuration Si2Wi is transformed into a new one
Si+12Wi+1 producing a substitution θi+1. This is done by applying some (non-
deterministically) selected transformation rule to any (non-deterministically)
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selected element a→ b of Si. Such step can be represented as

a→ b, S
︸ ︷︷ ︸

Si

2Wi `θi Si+12Wi+1

For the sake of simplicity, sometimes we will write a configuration Si2Wi as
Ki. The transformation rules are presented below.

Transformation Rules
In the following we assume X, Y ∈ V ar with X ∈ W ; ak, bk, t ∈ Pat⊥;
s ∈ Pat; and h ∈ DC ∪ FS. Moreover, Xk represent new, fresh variables.

R1 Y → Y, S2W `id S2W

R2 t→⊥, S2W `id S2W

R3 h am → h bm, S2W `id . . . , ak → bk, . . . S2W

R4 s→ X, S2W `{X 7→s} S{X 7→ s}2W
R5 X → Y, S2W `{X 7→Y } S{X 7→ Y }2W
R6 X → h am, S2W `{X 7→h Xm} . . . , Xk → ak, . . . S{X 7→ h Xm}2W,Xm

The algorithm finishes when a configuration is reached s.t. no transformation
can be applied. Next theorem ensures that such configuration always exists,
as well as its relationship with the entailment. The proof can be found in
Appendix A.

Theorem 5.1 The algorithm described above always stops in some config-
uration Sj2Wj which cannot be further transformed. Moreover, the initial
entailment f tn → t � f sn → s holds iff Sj = ∅.

Now, the interest of the entailment for declarative debugging is justified by
the next result.

Theorem 5.2 Entailment between basic facts is a decidable preorder. More-
over, any intended model given as a Herbrand interpretation I is closed under
entailment, i.e. if f tn → t � f sn → s and (f tn → t) ∈ I then
(f sn → s) ∈ I.

Proof.
The fact that Herbrand interpretations are closed under entailment is a straight-
forward consequence from the definition of the entailment relation and condi-
tions (ii), (iii) in the definition of Herbrand interpretation (see Section 2.3.4).
The definition of entailment also implies easily that � is a reflexive and transi-
tive relation, and thus a preorder. In order to prove that � is decidable, let us
consider two arbitrary basic facts f tn → t, f sn → s and choose any renaming
ρ such that (f tn → t)ρ and f sn → s share no variables. By definition of
entailment, (a) and (b) below are equivalent:

(a) f tn → t � f sn → s

(b) (f tn → t)ρ � f sn → s
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Finally, Theorem 5.1 ensures that (b) can be decided by applying the algo-
rithm described above to the initial configuration S02W0, where:

S0 = s1 → t1ρ, . . . , sn → tnρ, tρ→ s W0 = var((f tn → t)ρ)

2

Thanks to Theorem 5.2 an oracle question Q entailed by a fact already known
to be valid because of some previous answer must be valid. For instance, if we
already know that from X → X:suc X:⊥ is valid, other basic facts entailed by
this one, such as from z → z:⊥ and from (suc Y) → suc Y:suc (suc Y):⊥ must
also be valid. Dually, a question Q which entails a fact known to be invalid
because of some previous answer, must be invalid. For instance, if we know
from a previous answer that from z → suc z:⊥ is not valid, then other basic
facts that entail this one, such as from X → suc X:suc (suc X):[ ] must be also
invalid. In both cases, a question to the oracle can be avoided.

Our debugger has been implemented as part of the T OY system. A prototype
version can be downloaded from http://titan.sip.ucm.es/toy/. Here we show a
debugging session for a program which contains the wrong definition of the
function times already discussed in Section 2.2.2, along with correct definitions
of the functions head, tail, map and from. The user activates the debugger
because the incorrect answer {N 7→ suc z, Y7→ z} has been computed for the
goal head (tail ( map (times N) (from X))) == Y. The questions asked by the
debugger and the answers given by the user are as follows:

Consider the following facts:
1: from X → X:suc X:⊥
2: map (times (suc z)) (X:suc X:⊥) → ⊥:z:⊥
3: tail (⊥:z:⊥) → z:⊥
4: head (z:⊥) → z
Are all of them valid? ([y]es / [n]o) / [a]bort) n
Enter the number of a non-valid fact followed by a fullstop: 2.

Consider the following facts:
1: map (times (suc z)) (suc X:⊥) → z:⊥
Are all of them valid? ([y]es / [n]o) / [a]bort) n

Consider the following facts:
1: times (suc z) (suc X) → z
Are all of them valid? ([y]es / [n]o) / [a]bort) n

Consider the following facts:
1: times z (suc X) → z
2: plus z z → z
Are all of them valid? ([y]es / [n]o) / [a]bort) y

Rule number 2 of the function times is wrong.
Wrong instance: times (suc z) (suc X) → (plus (times z (suc X)) z)
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As shown by this example, our current prototype debugger searches the CT
top-down, using a strategy whose aim is to avoid redundant questions and to
give freedom to the oracle. At any point during the search, the current node
contains an invalid statement (initially, this is true because the root of the
CT corresponds to an error symptom detected by the user). The debugger
builds the list L of the basic facts attached to the children of the current node.
If some member of L entails a fact known to be invalid from some previous
oracle answer, the debugger moves to the corresponding child and continues
with the same strategy. Otherwise, the debugger displays the list L for the
oracle’s consideration. If the oracle regards all the facts in L as valid, then
the current node is buggy, and the debugger shows its associated program
rule instance (which can be computed from the CT) as responsible for the
bug. Otherwise, the oracle must choose some erroneous fact in the list. The
debugger adds this fact to its store of invalid facts, moves to the corresponding
child node, and continues with the same strategy.

In the simple example shown above, the entailment relation is not helpful,
but in more involved cases it can reduce the number of questions asked to
the oracle. Note that the particular search strategy we have described is such
that all the answers provided by the oracle are negative, except for the last
question. This might not be the case in other alternative strategies, which we
have not yet investigated. Our implementation also avoids to ask questions
about predefined functions (e.g. arithmetic operations), since they are trusted
to be correct. Allowing the user to annotate certain functions to be trusted
as correct is a simple albeit useful extension, not yet implemented.

6 Conclusions and Future Work

Program transformation is a known approach to the implementation of declar-
ative debugging of wrong answers in lazy FLP languages [22,20,25]. We have
given a new, more formal specification of this technique, which avoids type
errors related to the use of curried functions and preserves both well-typing
and program semantics (as formalized in [9,2]), independently of the narrow-
ing strategy chosen as goal solving mechanism. A prototype implementation
of our debugger for the functional logic language T OY [14] is available. Our
implementation uses a semantically correct algorithm to detect and avoid re-
dundant questions to the oracle, thus reducing the complexity of debugging.

In order to improve the practical usefulness of our results, we have started
a cooperation with Herbert Kuchen and Wolfgang Lux, to include a similar
debugger as a tool within the Curry [12] implementation developed at Münster
University. Hopefully, this will eventually help to evaluate the debugger on
practical applications. We also plan to implement and evaluate alternative
search strategies for the navigation phase. As more substantial research work,
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we plan to investigate and implement extensions of the debugger, to support
constraint-based computations as well as the diagnosis of missing answers.
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7 Appendix A: Proofs of the main results

7.1 Proofs of Results from Section 2

Proof of Theorem 2.2
This theorem is also based on some auxiliary lemmata.

Lemma 7.1 For any given Herbrand interpretation I, the analogous of Propo-
sition 2.1 holds for the calculus SCI, i.e.:

(i) For all t, s ∈ Pat⊥: t→ s is valid in I iff t w s.

(ii) For all e ∈ Exp⊥, t, s ∈ Pat⊥: if e → t is valid in I and t w s, then
e→ s is also valid in I.

(iii) For all e ∈ Exp⊥, t ∈ Pat⊥ and θ, θ′ ∈ Subst⊥ such that eθ → t is valid
in I and θ v θ′, the statement eθ′ → t is also valid in I, with a SCI
proof of the same size and structure.

(iv) For all e ∈ Exp⊥, s ∈ Pat⊥ such that e→ s is valid in I, the statement
eθ → sθ is also valid in I for every total substitution θ ∈ Subst.

Proof Idea. This can be proved by straightforward induction on the size of
SCI derivations, similarly to Proposition 2.1. 2

Lemma 7.2 Assume a Herbrand interpretation I, a partial expression e ∈
Exp⊥ and a partial pattern t ∈ Pat⊥. Then [[e]]I ⊇ [[t]]I iff t ∈ [[e]]I.

Proof. Assume [[e]]I ⊇ [[t]]I . By Lemma 7.1, t → t is valid in I. Then
t ∈ [[t]]I and therefore t ∈ [[e]]I . Conversely, suppose that t ∈ [[e]]I . Then e→ t
is valid in I, and for all s ∈ [[t]]I , t → s is also valid in I. By Lemma 7.1 it
follows that e→ s is valid in I for all s ∈ [[t]]I , which means [[e]]I ⊇ [[t]]I . 2

Lemma 7.3 Let I a Herbrand interpretation and f tn → s a basic fact. Then
f tn → s is valid in I iff (f tn → s) ∈ I.

Proof. If s =⊥ the result holds because f tn →⊥ belongs to every Herbrand
interpretation and f tn →⊥ is valid in I due to the SCI rule BT . In the rest
of the proof we assume that s is not ⊥.

If (f tn → s) ∈ I then f tn → s is valid in I, as witnessed by the following
SCI derivation, ending with a FAI step:

t1 → t1 . . . tn → tn s→ s (f tn → s) ∈ I

f tn → s

The derivation can be completed because Lemma 7.1 ensures that all the
premises ti → ti and s→ s are valid in I.

Conversely, if f tn → s is valid in I, there is a SCI proof of f tn → s, which
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must end with a FAI step and have the following form:

t1 → t′1 . . . tn → t′n s′ → s (f t′n → s′) ∈ I

f tn → s

By Lemma 7.1 we can conclude that t′1 v t1, . . . , t
′
n v tn and s v s′. Since

(f t′n → s′) ∈ I, item (ii) from the definition of Herbrand interpretation in
Section 2.3.4 implies (f tn → s) ∈ I. 2

Lemma 7.4 Let P any program and MP = {f tn → s | P `SC f tn → s}.
Then MP is a Herbrand interpretation.

Proof. MP must satisfy the three conditions of Herbrand interpretations:

(i) (f tn →⊥) ∈MP .
This property holds since f tn →⊥ can be proved in SC by means of the
BT rule.

(ii) If (f tn → s) ∈MP , ti v t′i, s w s′ then (f t′n → s′) ∈MP .
This follows immediately from the definition ofMP and Proposition 2.1.

(iii) If (f tn → s) ∈MP and θ ∈ Subst is a total substitution, then
(f tn → s)θ ∈MP . This is also a straigthforward consequence of Propo-
sition 2.1 and the construction of MP .

2

We are now ready to prove claims (a), (c) and (b) of Theorem 2.2, in this
order.

(a) Let ϕ be a statement such that P `SC ϕ and assume that I is a Herbrand
model of P . Let T be the proof tree of ϕ in SC. We will build a proof tree
T ′ of ϕ in SCI , showing that ϕ is valid in I. This is done by using induction
on the depth of T .

Basis: (depth(T)= 0). Then ϕ is the only node of T and corresponds either
to a BT , DC or to a RR inference. Since these rules are also present in SCI
we can take T ′ = T .

Inductive step: (depth(T)= n, n > 0). We distinguish different cases depend-
ing on the SC rule applied at the root of T .

DC: In this case ϕ must have the form h em → h tm and the inference step
at the root of T must be:

e1 → t1 . . . em → tm

h em → h tm

Since ruleDC also exists in SCI we can build T ′ with the same root as T and
with the same children at the root. Moreover by the induction hypothesis
the ei → ti are valid in I and therefore there exist proof trees in SCI that
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will complete the construction of T ′.

JN: In this case ϕ has the form e == e′ and the inference step at the root
of T must be:

e→ t e′ → t

e == e′

where t is a total pattern. Since rule JN also exists in SCI we can build T ′

with the same root as T and with the same children at the root. Morover
by the induction hypothesis the e → t, e′ → t are valid in I and therefore
there exist proof trees in SCI that will complete the construction of T ′.

AR + FA: In this case ϕ has the form f en am → t and the SC inference
at the root of T must be:

C r → s

e1 → t1 . . . en → tn f tn → s s am → t

f en am → t

Then we build T ′ by using rule FAI at the root:

e1 → t1 . . . en → tn s am → t (f tn → s) ∈ I

f en am → t

and completing the proof tree by means of SCI proof trees for the state-
ments ei → ti and s am → t, which exist by induction hypothesis, since
all these statements have proof trees of depth less than n in SC. However,
we still have to check that the conditions required by FAI are satisfied.
First t is actually a pattern different from ⊥ because this condition is also
required by rule AR + FA. To see that f tn → s is in I we observe that
f t1 . . . tn → t ⇐ C is an instance of some rewrite rule belonging to P .
Moreover, I satisfies C by induction hypothesis. Since I is a model of P ,
we can conclude that [[f t1 . . . tn]]I ⊇ [[r]]I . By induction hypothesis we also
know that r → s is valid in I. It follows that s ∈ [[r]]I ⊆ [[ft1 . . . tn]]I and
hence s ∈ [[ft1 . . . tn]]I , as we needed.

(c) MP is an Herbrand interpretation as shown in Lemma 7.4. Assume that
ϕ is valid inMP with proof tree T in SCMP

. Then we show by induction on
depth(T ) that we can build a proof tree T ′ for ϕ in SC.

Basis (depth(T ) = 0). The only possible inferences applied at the root of T
are BT , RR or DC. Since these 3 rules belong also to SC we can take T ′ = T .

Inductive Step (depth(T ) = n, n > 0). Then either DC, JN or FAMP
has

been applied at the root of T . In the DC and JN cases, the same inference
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can be applied at the root of T ′ and by induction hypothesis SC proof trees
Ti exist all the children. This completes the desired proof tree T ′.

In the FAMP
case the root inference of T has the form

e1 → t1 . . . en → tn s am → t t pattern, t 6=⊥, (f tn → s) ∈MP

f en am → t

Since (f tn → s) ∈ MP , then there exists a SC proof tree for f tn → s.
Such a proof tree must have a AR + FA inference at the root:

C r → s

t1 → t′1 . . . tn → t′n
f t′n → s (f t′n → r ⇐ C) ∈ [P ]⊥, s pattern, s 6=⊥

f tn → s

Hence, the statements ti → t′i, C and r → s have proof trees in SC. Then the
tree T ′ is built by using a FA inference at the root:

C r → s s pattern

e1 → t′1 . . . en → t′n
f t′n → s s am → t f t′n → r ⇐ C ∈ [P ]⊥,

f en am → t t pattern, t 6=⊥

To complete T ′ we only need to show that the statements ei → t′i have SC
proofs. This follows easily from Proposition 2.1, since each ei → ti has a SC
proof by induction hypothesis, and ti → t′i have also SC proofs.

(b) The fact that MP is included in any Herbrand model of P follows from
Lemma 7.3, the construction ofMP and item (a) of this theorem. Moreover,
we already know by Lemma 7.4 that MP is a Herbrand interpretation. In
order to show that MP is a model of P , we must prove that MP satisfies
every program rule instance (f tn → r ⇐ C) ∈ [P ]⊥. This is trivially true if
MP does not satisfy C. Assuming thatMP does satisfy C, we have to prove
that [[r]]MP ⊆ [[f tn]]MP . This means that any t ∈ Pat⊥ such that r → t is
valid inMP must verify that f tn → t is also valid inMP . By item (c) of this
theorem and the construction ofMP , it suffices to prove that P `SC f tn → t
under the assumption that P `SC r → t. If t = ⊥ this is trivially true.
Otherwise we build the following SC proof tree with an AR + FA inference
at the root:

C r → t

t1 → t1 . . . tn → tn f tn → t f tn → r ⇐ C ∈ [P ]⊥, t 6=⊥

f tn → t
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Note that this proof tree can be completed, since:

• P `SC ti → ti holds by Proposition 2.1.

• Each statement ϕ′ in C is valid in MP , and thus fulfils P `SC ϕ′, by item
(c) of this theorem.

• P `SC r → t is assumed to hold.

2

7.2 Proofs of Results from Section 4

Proof of Theorem 4.2
In what follows, we use the following notations:

• ΣT stands for a transformed signature, defined as explained in Section 4.2

• T T stands for a transformed type environment, defined by the condition
T T (X) = T (X)T for all X ∈ V ar.

• θT stands for a transformed type substitution, defined by the condition
θT (α) = θ(α)T for all α ∈ TV ar.

Now we present some auxiliary lemmata.

Lemma 7.5 Let T T be a type environment and aT1 . . . a
T
k , bT expressions such

that
1) (ΣT , T T ) `WT b

T :: (τ1 → . . .→ τk → τ)T

2) (ΣT , T T ) `WT a
T
i :: τTi for every i = 1, . . . , k.

Then (ΣT , T T ) `WT (. . . ((bT @ aT1 ) @ aT2 ) . . .) @ aTk :: τT .

Proof
Induction on k ≥ 0.

Basis: k = 0. Then (ΣT , T T ) `WT b
T :: τT , and the result holds.

Inductive Case: k > 0. Let e = (. . . ((bT @ aT1 ) @ aT2 ) . . .) @ aTk−1. By I.H.:

(ΣT , T T ) `WT e :: (τk → τ)T = τTk → (τT , cT ree)

Now, since @ :: (α → (β, cTree)) → α → β, it is clear that (ΣT , T T ) `WT

e @ aTk :: τT . 2

Lemma 7.6 For any type τ and any type substitution θ: τT θT = (τθ)T .

Proof
Induction on the structure of τ .

Basis: τ = α ∈ TV ar. Then αT θT = αθT = (αθ)T (by def. of θT ).

Inductive Case. Two possibilities:
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(a) τ = c τ1 . . . τn, for some c ∈ DCn. Then:

(c τ1 . . . τn)T θT =

(c τT1 . . . τTn )θT =

c (τT1 θ
T ) . . . (τTn θ

T ) = (by I.H.)

c (τ1θ)
T . . . (τnθ)

T =

(c (τ1θ) . . . (τnθ))
T =

((c τ1 . . . τn)θ)T

(b) τ = µ→ ν

(µ→ ν)θT =

(µT → (νT , cT ree))θT =

µT θT → (νT θT , cT ree) = (by I.H.)

(µθ)T → ((νθ)T , cT ree) =

(µθ → νθ)T =

((µ→ ν)θ)T

2

Lemma 7.7 The expression transformation e 7→ eT defined in Section 4.4
transforms any well typed expression (Σ, T ) `WT e :: τ into a well typed
expression (ΣT , T T ) `WT e

T :: τT .

Proof
We distinguish the same six cases as in the definition of eT given in Section
4.4.

1. e = X a1 . . . ak, X ∈ V ar, k ≥ 0.
In this case, eT = (. . . ((X @ aT1 ) @ aT2 ) . . .) @ aTk . Since (Σ, T ) `WT e :: τ ,
(Σ, T ) `WT ai :: τi, 0 ≤ i ≤ k and T (X) = τ1 → . . . → τk → τ . By I.H.
(ΣT , T T ) `WT a

T
i :: τTi , 0 ≤ i ≤ k. Applying Lemma 7.5 with bT = X the

result (ΣT , T T ) `WT e
T :: τT is obtained.

2. e = c e1 . . . em (c ∈ DCn,m < n, n > 0).
Assume that the principal type of c in Σ is c :: µ1 → . . . → µn → µ. Since
(Σ, T ) `WT e :: τ , there must be some θ ∈ TSubst such that

(Σ, T ) `WT ei :: µiθ (1 ≤ i ≤ m), τ = (µm+1 → . . .→ µn → µ)θ

By I.H. and Lemma 7.6 we obtain

(ΣT , T T ) `WT e
T
i :: µTi θ

T (1 ≤ i ≤ m)
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On the other hand, eT = cTm eT1 . . . e
T
m and the principle type of cTm in ΣT is

cTm :: µT1 → . . .→ µTm+1 → ((µm+2 → . . .→ µn → µ)
T
, cT ree)

Therefore, we can deduce:

(ΣT , T T ) `WT e
T :: µTm+1θ

T → ((µm+2 → . . .→ µm → µ)T θT , cT ree)

which is the same as (ΣT , T T ) `WT e
T :: τT , because

τT =

((µm+1 → . . .→ µ)θ)T = Lemma 7.6

(µm+1 → . . .→ µ)T θT =

(µTm+1 → ((µm+2 → . . .→ µn)T , cT ree))θT =

µTm+1θ
T → ((µm+2 → . . .→ µn)T θT , cT ree)

3. e = c e1 . . . en (c ∈ DCn, n ≥ 0).
Assume that the principal type of c in Σ is as in case 2.
Since (Σ, T ) `WT e :: τ , there must be some θ ∈ TSubst such that

(Σ, T ) `WT ei :: µiθ (1 ≤ i ≤ n), τ = µθ

By I.H. and Lemma 7.6 we obtain

(ΣT , T T ) `WT eTi :: µTi θ
T (1 ≤ i ≤ n)

Since the µi are the principal types of a data constructor’s arguments they
must be datatypes, so that µTi = µi. Moreover eT = c eT1 . . . e

T
n , and the

principal type declaration of c in ΣT is the same as in Σ. Therefore we can
deduce (ΣT , T T ) `WT e :: µθT . Since µ is also a datatype, Lemma 7.6 ensures
that µθT = µT θT = (µθ)T = τT and we are ready.

4. e = f a1 . . . ak (f ∈ FS0, k ≥ 0).
In this case

eT = (. . . (((@0 f
T )@ aT1 ) @ aT2 ) @ . . .) @ aTk

Assume that the principal types of f and fT in their respective signatures are
f :: µ and fT :: (µT , cT ree). Since (Σ, T ) `WT e :: τ , there must be some
θ ∈ TSubst such that

µθ = τ1 → . . . τk → τ, (Σ, T ) `WT ai :: τi, (1 ≤ i ≤ k)

By I.H. we can obtain: (ΣT , T T ) `WT aTi :: τTi . Moreover, using principal
types fT :: (µT , cT ree) and @0 :: (β, cTree)→ β it is easy to deduce:

(ΣT , T T ) `WT @0f
T :: µT θT = (µθ)T
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where the last equality holds by Lemma 7.6. Now:

(µθ)T = (τ1 → . . .→ τk → τ)T

and Lemma 7.5 can be applied (with b = f) to obtain

(Σ, T ) `WT (. . . (((@0 f
T )@ aT1 ) @ aT2 ) @ . . .) @ aTk :: τT

which is the same as (Σ, T ) `WT eT :: τT .

5. e = f e1 . . . em (f ∈ FSn, n > 0,m < n− 1).
Analogous to case 2.

6. e = f e1 . . . en−1 a1 . . . ak (f ∈ FSn, n > 0, k ≥ 0).
In this case

eT = (. . . ((fT eT1 . . . e
T
n−1) @ aT1 ) @ aT2 ) @ . . .) @ aTk

The principal types of f and fT in their respective signatures must be of the
form

f :: µ1 → . . .→ µn → µ, fT :: µT1 → . . .→ µTn → (µT , cT ree)

Since (Σ, T ) `WT e :: τ , there must be some θ ∈ TSubst such that

(µ1 → . . .→ µn → µ)θ = τ1 → . . .→ τn−1 → ν1 → . . .→ νk → τ

with

(Σ, T ) `WT ei :: τi (1 ≤ i ≤ n− 1), (Σ, T ) `WT aj :: νj (1 ≤ j ≤ k)

By I.H. we obtain:

(ΣT , T T ) `WT e
T
i :: τTi (1 ≤ i ≤ n− 1), (ΣT , T T ) `WT a

T
j :: νTj (1 ≤ j ≤ k)

Using the principal type of fT in ΣT as well as Lemma 7.6 we can deduce:

(ΣT , T T ) `WT fT eT1 . . . e
T
n−1 :: µTn θ

T → (µT θT , cT ree) = Lemma 7.6

µnθ
T → (µθT , cT ree) =

((µn → µ)θ)T =

(ν1 → . . .→ νk → ν)T

Now we can apply Lemma 7.5 to obtain

(ΣT , T T ) `WT (. . . ((fT eT1 . . . e
T
n−1) @ aT1 ) @ aT2 ) @ . . .) @ aTk :: τT

which is the same as (ΣT , T T ) `WT eT :: τT . 2
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Lemma 7.8 Any simple application of the transformation rules AP0 or AP1

defined in Section 4.4 preservers well-typing. More precisely: if a partially
transformed program rule is well-typed w.r.t. a type environment T Ti , then the
new program rule obtained by one single application of AP0 or AP1 is also
well-typed w.r.t. some type environment T Ti+1 with type assumptions for some
new variables.

Proof.

Both transformation rules AP0, AP1 transform only the part of the rule corre-
sponding to the local declarations, and hence we only need to check that this
part is well-typed.

• Rule AP0 transforms
{. . . ; p← e[@0 fun]; . . . T ← cNode . . . (clean lp)} into
{. . . ; (R′, T ′)← fun; p← e[R′]; . . . T ← cNode . . . (clean (lp++[(dVal R′, T ′)]))}
There must exist a type environment T Ti such that:

(1) (ΣT , T Ti ) `WT p :: τ :: e[@0 fun], with τ ′ the type used for (@0 fun) in
the proof.
(2) (ΣT , T Ti ) `WT T :: cTree :: (cNode . . . (clean (lp ++[(dVal R′, T ′)]))),
with [(pV al, cTree)] the type used for lp in the proof.

Then we define T Ti+1 by extending T Ti with suitable types for the new variables
R′ and T ′:

T Ti+1 = T Ti ⊕ {R′ :: τ ′, T ′ :: cTree}
Since τ ′ is the type of (@0 fun) in (1), then:

(ΣT , T Ti ) `WT @0 :: (τ ′, cT ree)→ τ ′, (ΣT , T Ti ) `WT fun :: (τ ′, cT ree)

Then obviously

(ΣT , Ti+1) `WT (R′, T ′) :: (τ ′, cT ree) :: fun, (ΣT , Ti+1) `WT p :: τ :: e[R′]

Finally, since dV al :: A → pV al, (++) :: [A] → [A] → [A] ∈ ΣT , and using
the types for T, lp in (2)

(ΣT , Ti+1) `WT (lp++[(dVal R′, T ′)])) :: [(pV al, cTree)]

and hence:

(ΣT , Ti+1) `WT (cNode . . . (clean (lp++[(dVal R′, T ′)]))) :: cTree

as expected.

• Rule AP1: The proof is very similar to the case of rule AP0.

2
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Now we are ready to prove Theorem 4.2:

In P T there are new functions such as clean, dVal, functions for partial appli-
cations and constructors, as well as functions coming from the transformation
of functions in P (see Section 4.4. We must prove that all these of functions
are well-typed.

• Function dVal is a primitive and therefore we only can assume that it is well-
typed. Checking that clean is well-typed is straightforward from its definition.

• Auxiliary functions fT0 , . . . , f
T
n−2 for f ∈ FSn. Two cases:

(1) fTm , m < n− 2
The only rule for

fTm :: τT1 → . . .→ τTm+1 → ((τm+2 → . . .→ τn → τ)
T
, cT ree)

is fTm Xm+1 → (fTm+1 Xm+1, void). We define a new type environment:

T T = {X1 :: τT1 , . . . , Xm+1 :: τTm+1}

which ensures:
a) (ΣT , T T ) `WT Xm+1 :: τT m+1.
b) (ΣT , T T ) `WT f

T
m+1 Xm+1 :: τTm+2 → ((τm+3 → . . .→ τn → τ)

T
, cT ree) =

((τm+2 → τm+3 → . . .→ τn → τ)
T
, cT ree).

c) (ΣT , T T ) `WT void :: cTree

(2) fTn−2

The only rule for fTn−2 :: τT1 → . . .→ τTn−1 → ((τn → τ)
T
, cT ree) is

fTn−2 Xn−1 → (fT Xn−1, void), and by defining the same type environment

T as above and since fT :: τT1 → . . . → τTn → (τ
T
, cT ree), the result can

be checked as in the previous case.

• Auxiliary functions cT0 , . . . , c
T
n−1 for c ∈ DCn. Analogous to the previous

case.

• Transformed functions.
The well-typedness of transformed functions can be checked in two steps:

1) Assuming a well-type program rule in P :

(R) f t1 . . . tn → r ⇐ . . . li == ri . . . where{. . . sj ← dj; . . .}

For a function with principal type declaration f : τ1 → τn → τ , the trans-
formed function has principal type fT : τT1 → . . . → τTn → (τT , cT ree) and
the transformed program rule looks initially as follows, before starting to apply
the transformations AP0 and AP1 to the local definitions:
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(RT0 ) fT tT1 . . . tTn → (R, T )⇐ . . . CLi == CRi . . .

where{ . . .

sTj ← dTj ;
. . .

CLi ← lTi ;
CRi ← rTi ;

. . .

R ← rT ;
T ← cNode ”f” [dV al tT1 , . . . dV al t

T
n ] (dV al R) ”f.j” (clean [ ])}

In order to prove that the previous partially transformed program rule is well-
typed, we consider a type environment T which well-types the original program
rule in the sense defined in Section 2.2.1. We define T T0 in the following way:

T T0 (X) = (T (X))T for all X ∈ dom(T ).
T T0 (R) = τT with τ s.t. (Σ, T ) `WT r :: τ .
T T0 (T ) = cTree.
T T0 (CLi) = T T0 (CRi) = νTi with νi s.t. (Σ, T ) `WT li :: νi :: ri.

Now:
- Since (R) well-typed, (Σ, T ) `WT ti :: τi. By Lemma 7.7,

(ΣT , T T ) `WT t
T
i :: τTi

- (ΣT , T T ) `WT (R, T ) :: (τT , cT ree).

- (ΣT , T T ) `WT CLi :: νTi :: CRi.

- Since (R) well-typed, (Σ, T ) `WT sj :: υ :: dj. By Lemma 7.7,

(ΣT , T T ) `WT s
T
j :: υT :: dTj

- Also, by Lemma 7.7, and the construction of T T :

(ΣT , T T ) `WT CLi :: νTi :: lTi

(ΣT , T T ) `WT CRi :: νTi :: rTi

(ΣT , T T ) `WT R :: τT :: rT

- Finally is easy to check from the signature of cNode, dV al and clean that:

(ΣT , T T ) `WT

(cNode ”f” [dV al tT1 , . . . , dV al t
T
n ] (dV al R) ”f.j” (clean [ ])) :: cTree
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and. by definition

(ΣT , T T ) `WT T : cTree

Therefore the initial transformation is well-typed.

2) The consecutive application of rules AP0 and AP1 transform a well-typed
rule into a new well-typed rule. This follows from Lemma 7.8.
Since each rule AP0 and AP1 reduces the number either the number of either
@0 or @, and the number of these symbols is finite, the process will end in a
well-typed rule.

2

Proof of Theorem 4.3

The proof of this theorem depends on the specification of the semantic calculus
FSCT used for deductions with transformed programs. This is presented
below:

Definition 7.9 The calculus FSCT consists of the rules of FSC (i.e. rules
BT , RR, DC, JN and FA of the SC described in Section 2.3.1) plus two
new rule schemes dV al and SFA (meaning Suspended Function Application)
defined as follows:

• (dV al) dval tT → dte

where:
- t can be any pattern in the original signature.
- tT is the transformation of pattern t as described in Section 4.2.
- dte is the representation of t as string.

• (SFA) callT → (⊥,⊥)

Here callT can be any partial expression which has one of the forms gT sT m
(with g ∈ FSm, m ≥ 0) or (F sT )ρT (F variable, s pattern, ρ ∈ Subst⊥).

Before starting the proof we observe that the SC deduction P `SC f tn → t
can be replaced by PF `FSC f tn → t due to the semantic correctness of
flattening (Theorem 4.1). Now we are ready to prove items (i) and (ii) of the
theorem.

(i) Assume a FSC proof tree T witnessing PF `FSC f tn → t with associated
APT apt. Reasoning by induction on the structure of T we show that it is
possible to find a total ct :: cTree representing apt such that

P T `FSCT fT tT n → (tT , ct)

Since t 6=⊥, the inference step at the root of T must be a FA step using one of
the defining rules for f in PF instantiated by some ρ ∈ Subst⊥. Let us consider
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this program rule rlF ∈ PF along with the corresponding program rules rl ∈ P
and rlT ∈ P T respectively. In the sequel we assume that rlT and rlF have the
forms shown at the end of Section 4.4 and in Section 4.7, respectively, except
that the left-hand sides are now assumed to be fT pT1 . . . pTn and f p1 . . . pn,
respectively. In the reasonings below, we make implicit use of Proposition 2.1
and Lemma 7.6 at several places.

The substitution ρ must be such that the inference step at the root of T as
well as the rest of T succeed. Therefore we can assume:
(1) pnρ = tn.

(2) PF `FSC Rρ→ t i.e. t v Rρ (since t, Rρ patterns).

(3) PF `FSC (callk → Rk)ρ for each condition Rk ← callk in rlF (proved by
subtrees Tk of T with smaller size than T ).

(4)PF `FSC (sj ← wj)ρ i.e. sjρ v wjρ for each condition sj ← wj in rlF
(since sjρ, wjρ are patterns).

(5) PF `FSC (LSi ← ui)ρ and PF `FSC (RSi ← vi)ρ i.e. LSiρ v uiρ
and RSiρ v viρ (since LSiρ, uiρ, RSiρ, viρ are patterns) for all conditions
LSi ← ui, RSi ← vi in rlF .

(6) PF `FSC (R← v)ρ i.e. Rρ v vρ, since Rρ, vρ are patterns.

Now we look for a corresponding ρT ∈ SubstT⊥ defined in such a way that we
can build a FSCT proof tree T ′ witnessing P T `FSCT fT tTn → (tT , ct),
so that the inference step at the root of T ′ will be a FA inference using the
ρT -instance of the program rule rlT . As a partial definition of ρT we assume:
ρT (X) = ρ(X)T for all X ∈ dom(ρ). The effect of ρT over those variables of
rlT which do not appear in rlF (namely T and the various Tk) will be defined
later. Presently, the partial definition of ρT allows us to draw some conclu-
sions from items (1)− (6) above:

(1′) pTn ρ
T = (pnρ)T = tT n.

(2′) tT v RρT i.e. P T `FSCT RρT → tT (since tT , RρT patterns).

(3′) Each condition (Rk, Tk)← callTk in rlT corresponds to Rk ← callk in rlF .
Here we can distinguish three cases:

(3.1′) Rkρ 6=⊥ and callk = g sm for some g ∈ FSm, m ≥ 0 and some
patterns sm. Then callTk ρ

T = gT sTmρ
T = gT (smρ)T and by I.H. applied to

PF `FSC g smρ→ Rkρ we can assume P T `FSCT callTk ρ
T → (Rkρ

T , ctk)
where ctk :: cTree represents aptk, the APT extracted from Tk.

((3.2′) Rkρ 6=⊥ and callk = F s with F variable. Since Fρ and sρ are
patterns, PF `FSC (F s → Rk)ρ, and Rkρ 6=⊥, it follows that Fρ must
be a rigid pattern. We consider different subcases according to the form of
Fρ:
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(3.2.1′) Fρ = c sm, m ≥ 0, ar(c) = m+ 1, c ∈ DC.
Since PF `FSC Fρ sρ→ Rkρ, sρ must be a pattern s.t. Rkρ v c sm sρ.
Moreover:
callTk ρ

T = (F sT )ρT = ((c sm)T ) (sT ρT ) = (cT m sT m) (sT ρT ). The last
step holds because of the definition of the transformation T . P T includes
the program rule cT m Xm+1 → (c Xm+1, void). Using this rule and
Rkρ

T v c sT m (sT ρT ), we can derive:

P T `FSCT cTm sT m (sT ρT )→ (Rkρ
T , void)

i.e.

P T `FSCT callTk ρT → (Rkρ
T , void)

(3.2.2′) Fρ = c sm, m ≥ 0 ar(c) > m + 1, c ∈ DC. Analogous to the
previous case but using the P T rule cTm Xm+1 → (cTm+1, void).

(3.2.3′) Fρ = g sm, m ≥ 0 ar(g) = m+ 1, g ∈ FS. In this case:

callTk ρT = (F sT )ρT = (g sm)T (sT ρT ) = gT sT m (sT ρT )

By I.H. applied to PF `FSC g sm (sρ) → Rkρ we arrive to the same
conclusion as in case (3.1′), namely: P T `FSCT callTk → (Rkρ

T , ctk)
where ctk :: cTree represents the APT extracted from Tk.

(3.2.4′) Fρ = g sm, m ≥ 0, ar(g) > m + 1, g ∈ FS. Similarly to (3.2.1′),
since PF `FSC (Fρ) (sρ) → Rkρ, sρ must be s.t. Rkρ v g sm (sρ).
Moreover callTk ρT = (F sT )ρT = (g sm)T (sT ρT ) = gTm sT m (sT ρT ), and
P T includes one of the two following defining rules:
(R1) gTm Xm+1 → (gT Xm+1, void) if m+ 2 < ar(g).
(R2) gTm Xm+1 → (gT Xm+1, void) if m+ 2 = ar(g).
In the case m+ 2 < arg(g) we have:
• P T `FSCT callTk ρT → (gTm+1 s

T
m (sT ρT ), void) using (R1).

• Rkρ
T v ((g sm)(sρ))T = gTm+1 s

T
m (sT ρT ).

Similarly, in the case m+ 2 = arg(g):

• P T `FSCT callTk ρT → (gT sTm (sT ρT ), void) using (R2).
• Rkρ

T v ((g sm)(sρ))T = gT sT m (sT ρT ).

In both cases, we can conclude that P T `FSCT callTk ρ
T → (Rkρ

T , void).

(3.3′) Rkρ =⊥. In this case Tk must reduce to one single step, applying the
SC inference BT, and we can establish no definite conclusion about callkρ,
except that it must have one of the following forms:
(∗) g sm, with g ∈ FSm, m ≥ 0; sm patterns.
(∗∗) (F s)ρ, which might be even flexible if Fρ = F .
In both cases, we can use the special FSCT -inference SFA to derive:
P T `FSCT callTk → (⊥,⊥).
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(4′) (sjρ)T v (wjρ)T i.e. sTj ρ
T v wTj ρ

T i.e. P T `FSCT (sTj ← wTj )ρT for
each condition sTj ← wTj in rlT (since sTj ρ

T , wTj ρ
T are patterns).

(5′) (LSiρ)T v (uiρ)T i.e. LSiρ
T v uTi ρ

T i.e. P T `FSCT (LSi ← uTi )ρT and
(RSiρ)T v (viρ)T i.e. RSiρ

T v vTi ρ
T i.e. P T `FSCT (RSi ← vTi )ρT ,

for each condition LSi ← uTi , RSi ← vTi in rlT , (LSiρ
T , uTi ρ

T , RSTi ρ
T , vTi ρ

T

are patterns).

(6′) (Rρ)T v (vρ)T i.e. RρT v vT ρT i.e. P T `FSCT (R← vT )ρ, (RρT , vT ρT

are patterns).

At this point we can complete the definition of ρT by requiring:
• ρT (Tk) = ctk, for all those k corresponding to case (3.1′) or case (3.2.3′).
• ρ(Tk) = void, for all those k corresponding to some of the cases (3.2.1′),
(3.2.2′), (3.2.4′).
• ρT (Tk) =⊥, for all those k corresponding to case (3.3′).
• ρ(T ) = cNode ”f” [dtT1

e, . . . , dtTn
e] dRρT e ”f.ind” [. . . ctk . . . ]

where:
- dtTi

e (1 ≤ i ≤ n), dRρT e are the representations of the patterns tTi (1 ≤ i ≤ n),
RρT as strings.
- ”f” resp. ”f.ind” are the strings which represent the symbol f and the symbol
f followed by the index member of the program rule rl (among the program
rules for f , taken in textual order).
- [. . . ctk . . . ] is the list of all those ctk corresponding to cases (3.1′), (3.2.3′).

Let ct = ρT (T ). We claim that P T `FSCT fT tT n → (tT , ct) and that
ct :: cTree represents apt, the APT extracted from the FSC proof tree T
which proved PF `FSC f tn → t. To justify the claim we build a FSCT

proof tree T ′ whose last step is a FA inference using the ρT -instance of the
program rule rlT ∈ P T . Items (1′)− (6′) show that the instantiated rule can
be applied, and that all the conditions occurring as premises of FA, except
the last one, can be proved by means of FSCT derivations. The last condition
is:

(T ← cNode ” f”[dV al pT1 , . . . , dV al p
T
n ] (dV al R)

”f.ind” (clean[. . . (dV al Rk, Tk) . . .]))ρ
T

This can be also derived from P T in FSCT , because:
• TρT is ct, as defined above.
• For all i ≤ i ≤ n, dV al (pTi ρ

T ) = dV al tTi , and P T `FSCT dV al tTi →
dtTi
e by the special FSCT -inference (dV al).

• P T `FSCT dV al RρT → dRρT e also because of (dV al).
• P T `FSCT clean [. . . , (dV al Rk, Tk)ρ

T , . . .]→ [. . . , ctk, . . .],
where [. . . , ctk, . . .] stands for the list of those ctk corresponding to cases
(3.1′), (3.2.3′). This follows from the definition of clean, because those k
which correspond to other cases are such that either Rkρ

T =⊥ (and then
P T `FSCT dV al Rkρ

T → d ⊥ e, P T `FSCT isBottom d ⊥ e → true) or
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ρT (Tk) = void.

Finally, observe that ct indeed represents apt, because apt is the APT ex-
tracted from T , and therefore its structure is:

f tn → t (with rlf instantiated by ρ)
�����

. . . callkρ→ Rkρ . . .

. . . . . .
PPPPP

�
�
@
@

aptk

Note that the children are the APT’s aptk corresponding to the uppermost
FA steps in T different from the root step and corresponding to function calls
which return a value different from ⊥. These FA inferences correspond to the
conditions (RK ← callk)ρ in rlFρ, but excluding some cases:
- Those k such that Rkρ =⊥, i.e. case (3.3′).
- Those k such that Rkρ 6=⊥ but (Rk ← callk)ρ has been proved (within T )
without applying inference FA, i.e. cases (3.2.1′), (3.2.2′) and (3.2.4′).

The remaining cases are just (3.1′) and (3.2.3′), for which we know that aptk
is represented by ctk :: cTree. Therefore, ct really represents apt.

(ii)

Assume that T ′ is a FSCT proof tree witnessing P T `FSCT fT tTn → (tT , ct).
Reasoning by induction on the structure of T ′ we can build a FSC proof tree
T witnessing PF `FSC f tn → t. A detailed proof would be similar to that
of item (i). The intuitive idea is as follows:
- All the steps in T ′ having to do with the computation of values of type
cT tree can be ignored. In particular we can ignore all the applications of
the FSCT rule (dV al), as well as all the applications of the FSCT rule FA
corresponding to the application of the auxiliary functions clean, irrelevant,
isVoid and isBottom.
All the FA steps in T ′ dealing with the application of gT for some g ∈ FS
(maybe f itself) can be converted into corresponding FA steps in T , using a
corresponding instance of the program rule. This idea works because of the
clear one-to-one correspondence between the program rules of P T and PF .
More formally, the inductive reasoning works because each FA step in T ′ uses
a program rule instance whose conditions (Rk, Tk) ← callk have instances
of the form gT sT m → (sT , ct) (for some g ∈ FSm), such that P T `FSCT
gT sT m → (sT , ct), with FSCT proof trees of smaller size than T ′ included as
parts of T ′. 2

Proof of Theorem 4.5
In order to prove the theorem we assume:
(1) G 
GS,P θ.

And we reason as follows:

54



Caballero and Rodŕıguez-Artalejo

(2) sol Xnθ == true 
1st
GS,Psol id , by (1) and stability of GS.

(3) Psol `SC sol Xnθ → true with APT apt which can be extracted from the
computation (2). By (2) and soundness of GS.

(4) P Tsol `FSCT solT Xnθ
T → (true, ct) where ct :: cTree represents apt.

This holds by (3) and the semantic correctness of the program transformation
(Theorem 4.3, item (i)).

(5) solT Xnθ
T == (true, T ) 
1st

GS,PTsol
{T 7→ ct}. By (2), (3), (4) and weak

completeness of GS.

Note that ct represents apt, an APT witnessing (3). Due to the definition of
sol in Psol, apt serves also as witness of P `SC Gθ. 2

7.3 Proofs of Results from Section 5

Proof of Theorem 5.1
First we present two auxiliary lemmata.

Lemma 7.10 Let Si2Wi be a configuration obtained after i steps of the al-
gorithm described in Section 5, and (s→ t) ∈ Si.
Then var(s) ∩Wi = ∅ ∨ var(t) ∩Wi = ∅.

Proof

We reason by induction on i.
Basis. The result holds for the first configuration because of the construction
of S0 and W0, since the two initial basic facts have no common variables.

Inductive step.
Consider the i-th step of the algorithm (i ≥ 1): Si−12Wi−1 `θi Si2Wi. Let
s→ t be any approximation statement in Si. We can distinguish two cases:

- s → t = (a → b)θi for some a → b in Si−1. By I.H. either a or b (or both)
share no variables with Wi−1. Assume that var(a) ∩Wi−1 = ∅ (analogous for
b). Then, since dom(θi) ⊆Wi−1, s = aθi = a and since Wi coincides with Wi−1

except for the possible addition of some new fresh variables, var(s)∩Wi = ∅.
- s→ t is some of the new approximation statements introduced either by rule
R3 or R6. In the case of R3, each ai → bi must fulfill the result, applying I.H.
to h am → h bm. The case of R6 it is clear from I.H. that var(h am)∩Wi−1 = ∅
and therefore also var(ai) ∩Wi = ∅ for all 1 ≥ i ≥ m. 2

Lemma 7.11 Let Si2Wi `θi+1
Si+12Wi+1 be some step of the algorithm de-

scribed in Sect. 5. Then Sol(Si2Wi) = (θi+1Sol(Si+12Wi+1))�Wi
.

Proof
The Lemma can be proved by examining the transformation rule applied at
the given step. In the case of rules R1, R2 and R3, θi+1 = id, Wi+1 = Wi

and the result follows from the definition of the approximation ordering v, as
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given in Section 2.1. Rules R4, R5 and R6 are considered below.

R4 Sol(s→ X,S2W ) = {X 7→ s}Sol(S{X 7→ s}2W )
a) Sol(s→ X,S2W ) ⊆ {X 7→ s}Sol(S{X 7→ s}2W )
Let θ ∈ Sol(s→ X,S2W ). Then:
- Xθ = sθ, since Xθ v sθ and θ is a total substitution.
- Sθ holds
- θ = {X 7→ s}θ, because for any Y ∈ V ar, if Y 6= X then Y {X 7→ s}θ = Y θ
and if Y = X then Y {X 7→ s}θ = sθ = Xθ = Y θ.
Therefore S{X 7→ s}θ = Sθ holds, and hence θ ∈ Sol(S{X 7→ s}2W ).
Finally, considering again that θ = {X 7→ s}θ, the expected result
θ ∈ {X 7→ s}Sol(S{X 7→ s}2W ) is obtained.

b) {X 7→ s}Sol(S{X 7→ s}2W ) ⊆ Sol(s→ X,S2W )
Any element in {X 7→ s}Sol(S{X 7→ s}2W ) must be of the form {X 7→ s}θ,
with θ ∈ Sol(S{X 7→ s}2W ). Then:
- S{X 7→ s}θ holds.
- s{X 7→ s}θ = X{X 7→ s}θ. To check this, note that X /∈ var(s), because
X ∈ W implies var(s) ∩W = ∅, by Lemma 7.10. Then s{X 7→ s}θ = sθ =
X{X 7→ s}θ.
Hence {X 7→ s}θ ∈ Sol(s→ X,S2W ).

R5 Sol(X → Y, S2W ) = {X 7→ Y }Sol(S{X 7→ Y }2W )
Analogous to the previous case.

R6 Sol(X → h am, S2W ) =
({X 7→ hXm}Sol(. . . , Xk → ak, . . . , S{X 7→ hXm}2W,Xm)�W

a) Sol(X → h am, S2W ) ⊆
({X 7→ hXm}Sol(. . . , Xk → ak, . . . , S{X 7→ hXm}2W,Xm)�W

Let θ ∈ Sol(X → h am, S2W ). Then:
- Xθ = h tm with akθ v tk.
- Sθ holds.
Consider the total substitution ρ =def θ ∪· {X1 7→ t1, . . . , Xm 7→ tm}. Then :
- Xkρ = tk, akρ = akθ and therefore akρ v Xkρ.
- S{X 7→ hXm}ρ = Sθ holds.
Hence ρ ∈ Sol(. . . , Xk → ak, . . . , S{X 7→ hXm}2W,Xm).
Moreover {X 7→ hXm}ρ�W = θ.
Therefore θ ∈ ({X 7→ hXm}Sol(. . . , Xk → ak, . . . , S{X 7→ hXm}2W,Xm)�W .

b) ({X 7→ hXm}Sol(. . . , Xk → ak, . . . , S{X 7→ hXm}2W,Xm)�W ⊆
Sol(X → h am, S2W )

Any member of ({X 7→ hXm}Sol(. . . , Xk → ak, . . . , S{X 7→ hXm}2W,Xm)�W
must be of the form θ = ({X 7→ hXm}ρ)�W with
ρ ∈ Sol(. . . , Xk → ak, . . . , S{X 7→ hXm}2W,Xm) s.t.:
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(1) For each k, akρ v Xkρ holds.
(2) S{X 7→ hXm}ρ = holds.
By Lemma 7.10, and since X ∈W , var(ak) ∩W = ∅.
Also, var(ak) ∩ (W,Xm) = ∅, since Xm are fresh variables.
Therefore akρ v Xkρ iff ak v Xkρ. Calling bk to each Xkρ:
(3) akρ v Xkρ iff ak v bk.

This means that θ must be of the form θ = {X 7→ h bm} ∪· ρ�(W−{X}).
Then:
- (X → h am)θ = h bm → h am which holds iff for each k ak v bk which is true
by (3) and (1).
- Sθ = S({X 7→ h bm}∪· ρ�(W−{X})) = S{X 7→ hXm}ρ which holds by (2). 2

Now, Theorem 5.1 can be proved as follows:

To prove that the algorithm is terminating we define a well founded lexico-
graphic order between configurations.
We say that Ki < Kj (with Ki = Si2Wi, Kj = Sj2Wj) iff
a) ||Ki ||1 < ||Kj ||1, or
b) ||Ki ||1 = ||Kj ||1 and ||Ki ||2 < ||Kj ||2, or
c) ||Ki ||1 = ||Kj ||1 and ||Ki ||2 = ||Kj ||2, and ||Ki ||3 < ||Kj ||3.
where:

• ||S2W ||1 = number of occurrences of rigid patterns h am, m ≥ 0 in some
(s→ t) ∈ S s.t.:

a) If h am is part of s then var(t) ∩W 6= ∅.
b) If h am is part of t then var(s) ∩W 6= ∅.

• ||S2W ||2 = number of occurrences of symbols h ∈ DC ∪ FS in S.

• ||S2W ||3 = size of S (as a multiset, counting repetitions).

Now it suffices to check that at each step of the algorithm Ki+1 < Ki. This
can be done by examining the transformation rule applied at this step, as well
as the selected (s→ t) ∈ Si:

R1 Then ||Ki+1 ||1 = ||Ki ||1, ||Ki+1 ||2 = ||Ki ||2, and ||Ki+1 ||3 < ||Ki ||3.

R2 Then ||Ki+1 ||1 = ||Ki ||1, and either
- ||Ki+1 ||2 = ||Ki ||2, ||Ki+1 ||3 < ||Ki ||3 (if t ∈ V ar)
or
- ||Ki+1 ||2 < ||Ki ||2 (if t is not a variable).

R3 Either ||Ki+1 ||1 < ||Ki ||1, or ||Ki+1 ||1 = ||Ki ||1 and ||Ki+1 ||2 < ||Ki ||2

57



Caballero and Rodŕıguez-Artalejo

(since symbol h is removed in Si+1).

R4 The algorithm step is, in this case, of the form:

s→ X, S2W
︸ ︷︷ ︸

Ki

`{X 7→s} S{X 7→ s}2W
︸ ︷︷ ︸

Ki+1

, X 6= s,X ∈W

If s is a variable then ||Ki+1 ||1 = ||Ki ||1, ||Ki+1 ||2 = ||Ki ||2, and
||Ki+1 ||3 < ||Ki ||3. If s is not a variable then it is a rigid pattern. Then,
since X ∈W , Lemma 7.10 ensures that

||S{X 7→ s}2W ||1 = ||S2W ||1 < || s→ X, S2W ||1

i.e. ||Ki+1 ||1 < ||Ki ||1.

R5 Then ||Ki+1 ||1 = ||Ki ||1, ||Ki+1 ||2 = ||Ki ||2, and ||Ki+1 ||3 < ||Ki ||3.

R6 Analogously to R4 when s is not a variable: ||Ki+1 ||1 < ||Ki ||1.
Next we prove that if Sj 6= ∅ then Sol(S02W0) = ∅ and hence there is no
substitution θ that solves the system and the entailment does not hold. By
Lemma 7.11 it is enough to show that Sol(Sj2Wj) = ∅. Since no rule trans-
formation can be applied to this configuration, at least one of the cases below
must hold. Notice that in every case the system cannot be solved.
a) ⊥→ s ∈ Sj, s 6=⊥. Then there exists no total substitution θ such that
sθ v⊥.
b) h am → g bl with either h 6= g or m 6= l. Obvious.
c) h am → X, h am not total, X ∈ Wj. Then there is no total substitution θ
s.t. Xθ ⊆ (h am)θ.
d) X → Y , X 6= Y , X /∈Wj, Y /∈Wj. Straightforward, from the requirement
of dom(θ) ⊆Wj in every solution.
e) X → h am, X /∈Wj. As the previous case.

Finally, if Sj = ∅ then
Sol(∅2Wj) = SubstWj

where SubstWj
= {θ ∈ Subst | dom(θ) ⊆Wj}.

We consider the substitution θ = θ1θ2 . . . θj.
By Lemma 7.11, Sol(S02W0) = (θSubstWj

)�W0 .
Since id ∈ SubstWj

, θid �W0= θ �W0∈ Sol(S02W0), and hence θ �W0 can be
used to prove the entailment between both basic facts. 2
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8 Appendix B: Some simple Examples

8.1 Example 1

This is based on an example for logic programming debugging presented in
[6]:

rev :: [A] → [A]

rev [ ] → [ ]

rev (X:Xs) → app (rev Xs) (X:[ ])

app :: [A] → [A] → [A]

app [ ] Y → Y

app (X:Xs) Y → app Xs Y

The rule app.2 is erroneous and the goal

rev (U:V:[ ]) == R

yields the wrong answer {R 7→ U:[ ]}. This is the debugging session in T OY:

Consider the following facts:

1: rev (U:V:[ ]) → U:[ ]

Are all of them valid? ([y]es / [n]o) / [a]bort) n

Consider the following facts:

1: rev (V:[ ]) → V:[ ]

2: app (V:[ ]) (U:[ ]) → U:[ ]

Are all of them valid? ([y]es / [n]o) / [a]bort) n

Enter the number of a non-valid fact followed by a fullstop: 2.

Consider the following facts:

1: app [ ] (U:[ ]) → U:[ ]

Are all of them valid? ([y]es / [n]o) / [a]bort) y

Rule number 2 of the function app is wrong.

Wrong instance: app (V:[ ]) (U:[ ]) → app [ ] (U:[ ])

8.2 Example 2

This example shows how the insertion sort algorithm can be programmed
in T OY, taking advantage of the possibility of defining non-deterministic
functions.
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insertSort :: [A] → [A]

insertSort [ ] → [ ]

insertSort (X:Xs) → insert X (insertSort Xs)

% non-deterministic function

insert :: A → [A] → [A]

insert X [ ] → X:[ ]

insert X (Y:Ys) → X:Y:Ys ⇐ X ≤ Y == true

insert X (Y:Ys) → insert X Ys ⇐ X ≤ Y == false

The right hand side of the rule insert.3 should be Y:insert X Ys. Function ≤
can be considered predefined and hence correct. The goal

insertSort (2:1:[ ]) == R

renders the incorrect answer {R 7→ (2:[ ])}. The debugging session in T OY is
as follows:

Consider the following facts:

1: insertSort (2:1:[ ]) → 2:[ ]

Are all of them valid? ([y]es / [n]o) / [a]bort) n

Consider the following facts:

1: insertSort [1] → 2:[ ]

2: insert 2 [1] → 2:[ ]

Are all of them valid? ([y]es / [n]o) / [a]bort) n

Enter the number of a non-valid fact followed by a fullstop: 2.

Consider the following facts:

1: insert 2 [ ] → 2:[ ]

Are all of them valid? ([y]es / [n]o) / [a]bort) y

Rule number 3 of the function insert is wrong.

Wrong instance: insert 2 (1:[ ]) → insert 2 [ ] ⇐ 2 ≤ 1 == false

8.3 Example 3

Next example is a Haskell-like program computing the frontier of a given tree
T . Function frontier is expected to traverse the leaves of T from left to right,
collecting them in a list. Trees are represented by constructors leaf/1 and
node/2.

data tree A = node (tree A) (tree A) | leaf A

frontier :: tree A → [A]

frontier Tree → appendFT Tree [ ]
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appendFT :: (tree A) → [A] → [A]

appendFT (leaf X) → (X:)

appendFT (node Left Right) → appendFT Right . appendFT Left

(.) :: (B → C) → (A → B) → A → C

(F . G) X → F (G X)

The auxiliary function appendFT is intended to append the frontier of a given
tree to a given list. However rule appendFT.2 is wrong, its right hand side
should be appendFT Left . appendFT Right (swapping Left and Right). For
example, the goal:

frontier (node (leaf 0) (leaf 1)) == Xs

computes the wrong answer {Xs 7→ 1:0:[ ]} ( instead of {Xs 7→ 0:1:[ ]} ). The
debugging session in this case looks as follows:

Consider the following facts:

1: appendFT (node (leaf 0) (leaf 1)) → (1:).(0:)

2: (1:).(0:[ ] → 1:0:[ ]

Are all of them valid? ([y]es / [n]o) / [a]bort) n

Enter the number of a non-valid fact followed by a fullstop: 1.

Consider the following facts:

1: appendFT (leaf 0) → (0:)

2: appendFT (leaf 1) → (1:)

Are all of them valid? ([y]es / [n]o) / [a]bort) y

Rule number 2 of the function appendFT is wrong.

Wrong instance:

appendFT (node (leaf 0) (leaf 1)) → appendFT (leaf 1) .appendFT (leaf 0)

The buggy function appendFT is higher-order, since it returns functions as
results. Therefore the debugger asks the oracle about basic facts whose right-
hand sides can be higher order patterns as

appendFT (node (leaf 0) (leaf 1)) → (1:).(0:)

These questions make sense in our framework, and are crucial to detect the
bug in this case.

8.4 Example 4

The last example is intented to compute the infinite list of all the prime
numbers, by applying the classical sieve of Erathostenes method.

primes :: [int]

primes → sieve (from 2)
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from:: int → [int]

from N → N:from (N+1)

sieve:: [int] → [int]

sieve (X:Xs) → X:filter (notDiv X) (sieve Xs)

filter :: (A → bool) → [A] → [A]

filter P [ ] → [ ]

filter P (X:Xs) → if P X then (X:filter P Xs)

else filter P Xs

notDiv :: int → int → bool

notDiv X Y → mod X Y > 0

take :: int → [A] → [A]

take N [ ] → [ ]

take N (X:Xs) → if N > 0 then (X:take (N-1) Xs)

else [ ]

However, due to the mistake in rule notDiv.1 (its right-hand side should be
mod Y X > 0) the goal

take 3 primes == R

yields the incorrect answer {R 7→ (2:3:4:[ ])}. The debugging session locates
the wrong answer as follows:

Consider the following facts:

1: primes → 2:3:4:5:

2: take 3 (2:3:4:5: ) → 2:3:4:[ ]
Are all of them valid? ([y]es / [n]o) / [a]bort) n

Enter the number of a non-valid fact followed by a fullstop: 1.

Consider the following facts:

1: from 2 → 2:3:4:5:

2: sieve (2:3:4:5: ) → 2:3:4:5:

Are all of them valid? ([y]es / [n]o) / [a]bort) n

Enter the number of a non-valid fact followed by a fullstop: 2.

Consider the following facts:

1: sieve (3:4:5: ) → 3:4:5:

2: filter (notDiv 2) (3:4:5: ) → 3:4:5:

Are all of them valid? ([y]es / [n]o) / [a]bort) n

Enter the number of a non-valid fact followed by a fullstop: 2.
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Consider the following facts:

1: notDiv 2 3 → true

2: filter (notDiv 2) (4:5: ) → 4:5:

Are all of them valid? ([y]es / [n]o) / [a]bort) n

Enter the number of a non-valid fact followed by a fullstop: 2.

Consider the following facts:

1: notDiv 2 4 → true

2: filter (notDiv 2) (5: ) → 5:

Are all of them valid? ([y]es / [n]o) / [a]bort) n

Enter the number of a non-valid fact followed by a fullstop: 1.

Rule number 1 of the function notDiv is wrong.

Wrong instance: notDiv 2 4 → (mod 2 4) > 0

Notice the occurrence of symbol (representing ⊥) in many basic facts of the
session, approximating results of subcomputations that were not needed.
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