
Electronic Notes in Theoretical Computer Science 76 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume76.html 13 pages

Declarative Debugging for Encapsulated Search

Rafael Caballero 1

Dep. Sistemas Informáticos y Programación
Universidad Complutense Madrid

Madrid, Spain

Wolfgang Lux 2

Institut für Wirtschaftsinformatik
Westfälische Wilhelms-Universität Münster

Münster, Germany

Abstract

Declarative debugging has been proposed as a suitable technique for developing
debuggers in the context of declarative languages. However, to become really useful
debuggers must be able to deal with those parts of the languages that have no clear
declarative semantics but are widely used in realistic programs. We explain in this
paper how a declarative debugger of wrong answers for the lazy functional-logic
language Curry can be extended to debug programs including the encapsulated
search, an important feature of this language designed to control non-deterministic
computation steps. We show how this can be done without introducing any changes
in the compiler.

1 Introduction

Declarative debugging, also known as algorithmic debugging, was first intro-
duced in [Sha82] in the context of the logic programming language Prolog,
and later (see [Nai97]) presented as a general debugging technique. The over-
all idea is to introduce a suitable computation tree associated to any erroneous
computation (the initial symptom). Different kinds of errors will have different
types of associated computation trees.

The nodes of such computation trees must contain the results of auxiliary
subcomputations, each one obtained by means of some logical inference from
the results found at its children. Also, any node must have a possible cause

1 Email: rafa@sip.ucm.es
2 Email: wlux@uni-muenster.de

c©2002 Published by Elsevier Science B. V.

http://www.elsevier.nl/locate/entcs/volume76.html

Caballero and Lux

of the error associated. A buggy node is then a node with an erroneous result
and with no erroneous results at its children, corresponding therefore to an
erroneous subcomputation (i.e. it produces an erroneous output starting with
correct inputs). Since the root of the tree is erroneous because it is the result
of the main computation, it is easy to prove that in such tree at least one
buggy node must exist, and therefore a cause of the error can be found.

In order to detect erroneous nodes an intended meaning of the program is
assumed. This intended meaning must be known by an external oracle which
is consulted by the debugger during the debugging process. Usually this oracle
is the user, and hence the number and simplicity of the questions become a
key concept for the usefulness of the debugger.

Due to its abstraction from the operational mechanisms of the languages,
declarative debugging has been particularly helpful in the context of declara-
tive programming, where the built-in control complicates the use of traditional
debugging techniques such as tracing. This is particularly true in the case
of lazy functional and functional-logic languages [NB96,NF97,NS97,Pop98]
where the evaluation order must be transparent to the programmer. A known
extension of declarative debugging is abstract diagnosis [CL+99,ACF01], lead-
ing to equivalent bottom-up and top-down diagnosis methods which do not
require error symptoms to be given in advance. In order to be effectively im-
plemented, abstract diagnosis uses abstract interpretation techniques to build
a finite abstraction of the intended program semantics. These methods are
outside the scope of this paper.

To become really helpful declarative debuggers cannot be constrained to
deal only with the semantically declarative parts of the language. For instance
input/output and graphical interfaces are part of realistic applications and
hence any debugger tool should allow programs with these features to become
fully applicable.

This is also the case of the encapsulated search [HS98], a feature of the
language Curry [Han00] introduced to control non-deterministic computation
steps. The encapsulated search can be used to implement search strategies
different from the usual depth-first search, such as bounded search or breadth-
first search. Also, it allows the programmer to encapsulate non-deterministic
computations in programs using I/O facilities. For all these reasons, encap-
sulated search is part of many Curry programs and a realistic debugger for
Curry should be able to debug programs including it.

Unfortunately, this is not trivial. On one hand, the encapsulated search is
based on a built-in primitive try which is described in terms of its operational
behaviour, thus having no clear declarative semantics. On the other hand,
try cannot be considered as a usual primitive (like, for instance, sin). Indeed,
in declarative debugging primitives are automatically assumed to be correct
and a void computation tree associated to them. However, try is a higher-
order primitive, which means that the computation of try can have associated
erroneous subcomputations, not because the primitive itself is wrong, but due

2

Caballero and Lux

to the evaluation of terms involving other functions of the program passed as
parameters.

We present in this paper a declarative debugger for Curry which deals
with programs including encapsulated search and show how this can be done
without affecting the built-in code for try. The key idea is to replace all the
calls to the primitive try in the debugged program by calls to a new function
try’. This function is defined in Curry and will return the trees corresponding
to the subcomputations carried out by the higher order parameters inside
try. We show how this can be done easily in a declarative debugger based
on program transformation. The ideas presented in this paper are part of
the declarative debugger tool of wrong answers recently incorporated into the
Curry system developed at the University of Münster [Lux99].

The next section introduces the declarative debugger for wrong answers
included in the Münster Curry system. Section 3 introduces the encapsulated
search in Curry, and section 4 presents our solution for extending the debugger
to programs using this feature, showing the debugging sessions obtained for
the examples of section 2. Finally, section 5 presents some conclusions and
future work.

2 Declarative Debugging of Wrong Answers in Lazy
Functional-Logic Programs

In this section we introduce a declarative debugger of wrong answers for Curry,
but still without considering encapsulated search. First we will introduce the
computation trees used by our debugger and then explain briefly the program
transformation mechanism used to implement the tool. All the concepts are
introduced informally and by means of examples. See [CLR00,CR02] for a
complete theoretical presentation on these aspects. Both works are presented
in the context of the lazy functional-logic language T OY but are also valid
for Curry with minor changes. Notice that differences at the operational level
(such as the availability of residuation in addition to narrowing for function
reduction in Curry), do not affect the semantics and therefore have no influence
on the debugger.

All examples are presented in the syntax of the lazy functional-logic lan-
guage Curry (see [Han00] for a complete description). We will consider initial
goals as general expressions e, and computed answers as pairs (e′, σ), meaning
that eσ can be evaluated producing e′ as result. Whenever σ = id we will write
the computed answer simply as e′. Notice that Curry allows non-deterministic
computations and therefore a goal can have several answers.

Computation Trees

As we said in the introduction, the debugging process starts with an initial
symptom detected while evaluating some goal. Two different types of symp-
toms are possible, each one corresponding to a different sort of bug:

3

Caballero and Lux

Positive symptom: An unexpected answer is obtained as the result of the com-
putation. This answer is called a wrong answer.
Negative symptom: An expected answer is missing in the multiset of results
obtained as the result of the computation. This answer is called a missing
answer. A particular (but usual) case of missing answers is obtained when a
goal fails (i.e. computes no answer) unexpectedly.

Consider for instance, the Curry program in Fig. 1. Function append repre-

append eval flex

append:: [A] → [A]→ [A]

append [] ys = ys

append (x:xs) ys = x : append xs ys

last:: [A] → A

last xs | append [y] ys =:= xs = y where y,ys free

Fig. 1. Last element in a list

sents the concatenation of two lists, while function last is intended to compute
the last element in a list. However, the goal

last [1,2,3]

returns 1 as the only computed answer. Here we have both a missing answer
(3) and a wrong answer (1).

In order to detect wrong answers, the oracle (the user in our debugger)
must know the intended meaning I of the program. As proved in [CLR00], it
is enough to consider I as a set of basic facts of the form f t1 . . . tn → t, where
t1 . . . tn, t are constructor terms, meaning that function f produces t as a result
when applied to t1 . . . tn. All questions to the user will be about whether a
basic fact is in I or not. Notice that this ensures that the questions asked to
the user are as simple as possible. This is done by replacing nested function
calls by their results obtained during the computation. A suspended function
call not evaluated at the end of the computation is denoted by a special
constructor term ⊥, represented in the debugger questions by the symbol .
Thus we can say that last [1,2,3] → 1 /∈ I while last [1,2,3] → 3

∈ I, with I the intended meaning of the program in Fig. 1.

The computation trees used by the debugger will have basic facts at their
nodes. Each node has an associated program rule, the program rule used
at that computation step. Thus the debugger will point out the program
rule associated to a buggy node as an incorrect program rule. The children
of a node correspond to the subcomputations carried out while evaluating

4

Caballero and Lux

the conditions (guards and local declarations) and the right-hand side of the
program rule used at that point. The results of soundness and completeness
presented in [CLR00] ensure that given a wrong answer an incorrect program
rule is detected by the debugger.

Implementing the Debugger

Several strategies have been presented to create and navigate the computa-
tion tree. A well-known approach widely employed in Logic Programming uses
meta-interpreters to re-execute the goal during the debugging phase. Thus,
the computation tree is not constructed explicitely, and both wrong and miss-
ing answers are easily handled. This idea has been extended in the case of
NUE-Prolog to Functional-Logic Languages [NB95].

However, this solution is not feasible in languages that do not provide these
built-in meta-instructions, as Haskell or Curry. To the best of our knowledge,
only declarative debuggers for wrong answers are currently available for these
languages. The reason is twofold: first, the computation trees necessary for
detecting missing answers are much more complicated. Second, often wrong
and missing answers occur simultaneously, i.e. we obtain an unexpected an-
swer instead of the expected one. In these cases usually it is enough to find
out the reason for the wrong answer to get rid of both errors. This is also the
case of our debugger: only wrong answers are treated.

Two different techniques have been proposed in related papers for pro-
ducing a computation tree associated to a wrong computation (see [NS97]
for a comparison). These two proposals are also valid for the case of lazy
functional-logic programming:

- Modify the implementation of the abstract machine to produce the compu-
tation tree.

- Transform the program to be debugged P into a new program P ′ in which
all the functions return the same result as in P but paired with their corre-
sponding computation tree.

We have adopted the second alternative based on program transformation
because of its flexibility and portability. Therefore, a function like

append::[a] → [a] → [a]

will be included in the transformed program with a type

append’::[a] → [a] → ([a],CTree)

where CTree is a datatype defined to represent computation trees:

data CTree = Void | Node String [String] String [CTree]

Void trees are used for auxiliary functions whose computations cannot be
the cause of the error (trusted functions). The last argument of Node are
the children trees, while the strings represent, respectively, the name of the
program rule, its arguments and the produced result. An impure function

5

Caballero and Lux

dval::a → String is used in the transformed program (see the example
below) to convert any value into its String representation.

Observe that this type transformation must be applied recursively in order
to change also the type of functional types occurring as parameters. In general
each n-ary function

f :: τ1 → . . . → τn → τ

is transformed into a function

f ′ :: τ1′ → . . . → τn′ → (τ ′, CTree)

with the type transformation ′ defined as:

α′ = α (C τn)′ = C τn′ (µ → ν)′ = µ′ → (ν′, CTree)

where α is a type variable and C a type constructor of arity n. Actually, as
explained in [CR02] a n-ary function f is transformed into n + 1 functions in
the transformed program, including n functions for the case of partial appli-
cations of f . However, we will skip these auxiliary functions here for the sake
of simplicity. As an example, the second rule of append will appear in the
transformed programs as:

append’ (x:xs) ys = (result,tree)

where (r,t) = append’ xs ys

result = x : r

tree = Node "append" [dval (x:xs), dval ys]

(dval result) [t]

In this case there is only one subcomputation, append’ xs ys, and that it
produces a result r and a tree t which will be the only child of a computation
step using this program rule.

3 Encapsulated Search

The encapsulated search [HS98] in Curry allows to explore the search space
of a predicate with a user defined search strategy. This is useful if the default
strategy is not suitable. In addition, it allows to encapsulate non-deterministic
computations such that they can be used in a program that interacts with the
external world through Curry’s monadic I/O system [PW93].

Programatically the encapsulated search is available through the primitive
function try with type

(α → Success) → [α → Success]

The argument of try is the (unary) predicate whose solutions are searched.
The evaluation of an expression try g for some search goal g starts by applying

6

Caballero and Lux

g to a fresh variable x and then reduces this application until one of the
following happens.

(i) The evaluation fails, i.e. there is no solution to g x. In this case the
encapsulated search returns an empty list.

(ii) The application succeeds, taking only deterministic computation steps.
In this case try g returns a singleton list [g′], where g′ is the solved
form of g. For instance, given the definitions from Fig. 1, try (λx → x

=:= last [1,2,3]) returns the list [λx → x =:= 1]. Notice that the
evaluation of last [1,2,3] is completely deterministic.

(iii) A non-deterministic computation step occurs. In this case try g returns
a list of all possible continuations after this step in the form of partially
solved search goals.
Thus try (λx → append x [] =:= [1,2,3]) evaluates to the list 3

[(λx → x =:= [] & append [] [] =:= [1,2,3]),

(λx → let y,ys free in

x =:= (y:ys) & append (y:ys) [] =:= [1,2,3])]

With the help of the try primitive, we can implement different strategies to
explore the search space of a predicate. The necessary functions to implement
a breadth first search and unpack its solutions are shown in Fig. 2. The bfs

bfs g = step [g]

where step [] = []

step (g:gs) = collect (try g) gs

collect [] gs = step gs

collect [g] gs = g : step gs

collect (g1:g2:gs) gs’ = step (gs’ ++ g1:g2:gs)

unpack g | g x = x where x free

Fig. 2. Breadth first search

function maintains a list of search goals. The local step function takes the
next goal from this list and applies try to it. If there is no solution to this goal
it is discarded. Otherwise, if the goal can be solved deterministically its solved
form is returned. Finally, if try returns a list of alternatives the local collect
function appends them to the list of search goals. In any case, step is called
again for the remaining goals. The unpack function is useful for extracting
the solution of a search goal.

Due to the lazy evaluation strategy of Curry only those solutions are com-

3 In Curry the operator & denotes the (concurrent) conjunction of two predicates.

7

Caballero and Lux

puted that are actually needed, making it possible to use bfs for a goal which
has infinitely many solutions. Consider for instance the program of Fig. 3 for
finding paths in a directed graph. The existence of cycles in the graph can

data Node = A | B | C | D

graph:: [(Node,Node)]

graph = [(A,B), (B,A), (B,D), (D,C), (C,B)]

path:: [(Node,Node)] → Node → Node → [Node]

path g x y | x =:= y = [x]

path g x y | (member (x,z) g) & (path g y z =:= l) = x:l

where z,l free

member:: a → [a] → Success

member x (y:ys) = x=:=y

member x (y:ys) = member x ys

Fig. 3. Paths in a directed graph

produce non-terminating computations using the default depth-first search.
However by using bfs in combination with head we can try a goal like

unpack (head (bfs (λl → l =:= path graph B C)))

which computes the shortest path from B to C. Nevertheless the result ob-
tained is [B, C, A, B] which is a wrong answer in the sense of Sect. 2, and
constitutes an example showing the convenience of debugging programs that
include encapsulated search.

4 Declarative Debugging of Encapsulated Search

A declarative debugger has no option than trusting the implementation of
primitive functions. In the case of first order primitives the debugger can
associate a void computation tree with them. However, the situation is more
complicated for a higher order primitive like try.

Because of the functional types occurring in the argument and result types
of try, it does not suffice to pair the result of try with a void computation tree.
In addition, the arguments and the results of try have to be transformed to
match the types expected by the debugger, following the type transformation

8

Caballero and Lux

described in Sect. 2:

try’::(a → (Success,CTree)) → ([a → (Success,CTree)],CTree)

try’ g = (map wrap (try (unwrap g)),Void)

unwrap g = λx → let (r,t) = g x in r

wrap g = λx → (g x,Void)

The auxiliary function unwrap transforms the argument into a regular search
goal, i.e. a unary predicate, by discarding its computation tree. On the other
hand, the wrap function invents a computation tree (Void) to be associated
to goals returned by the try primitive. The use of a void computation tree is
justified by the fact that all elements of the list returned by try are (equivalent
to) lambda abstractions.

However, this transformation is too naive, as can be seen if we use the
following main function as a goal with the program in Fig. 1.

main = unpack (head (bfs (λx → x =:= last [1,2,3])))

When executed this program returns the wrong result 1. But we are unable
to find the source of this error in function last using the above transformation
of try : 4

Entering debugger...

No error has been found

This outcome results from the fact that we discard computation tree associated
with the computations performed inside the encapsulated search and at the
same time return a void computation tree from try’. Thus, our transformation
not only trusts the try primitive itself but also all computations carried out
by try as well.

As try performs internal computations which can be wrong, it seems that
we should return a non-void computation tree together with the list search
goals. But we cannot look inside the operation of the try primitive in order
to determine which operations have been performed within the encapsulated
search. Even worse, if a non-deterministic computation step has caused try
to return, no computation tree has been built for the search goal but only
(unrelated) parts of this tree exist.

Fortunately, a careful analysis reveals that it is not necessary to extract
such information at all if we want to diagnose wrong answers. In the presence
of meta functions like try we have to be more precise about which errors can

4 In all the debugging sessions presented in this section functions bfs and unpack are con-
sidered trusted. Thus the navigator skips automatically the questions about their validity,
going directly to their children.

9

Caballero and Lux

be considered as wrong answers because the encapsulated search may turn
missing answers into wrong answers. Consider for instance the simple goal

main = bfs (λx → last [1,2,3] =:= 3 & x =:= 1)

For the intended meaning of last we expect this function to return a list
containing a λ-abstraction equivalent to λx → x =:= 1. However, given the
definition of last from Fig. 1 the program will return an empty list, which is
a wrong answer. On the other hand, if we consider the search goal passed to
try alone, it has no solution at all but fails. Thus, we have a missing answer.
We cannot expect our debugger to diagnose such errors which were originally
missing answers and manifest themselves as wrong answers only by the use of
a meta function.

Having thus restricted the set of errors we can detect, it turns out that
we only need the computation trees of solved search goals and can trust all
intermediate computations performed by try. The only kind of wrong answer
that is possible for a unary predicate p is p t being satisfied for some term
t such that p t → Success 6∈ I. Such an error can be observed only if the
(solved) search goal returned from try is applied to an argument in a code
similar to unpack. The computation tree associated to the search goal thus
becomes a child of the node associated to the function which unpacks the
solution.

We cannot return the computation tree computed by the transformed
search goal directly because the try primitive can only handle (unary) pred-
icates. Instead we can instantiate an additional argument to the search goal
with the computation tree when the computation succeeds. Thus our im-
proved wrap and unwrap functions become

unwrap g = λ(x,t) → let (r,t’) = g x in r & t =:= t’

wrap g x | g (x,t) = (Success,t) where t free

With these definitions, try’ still returns results of the form (value,Void) as
any other primitive, but now each element in the list value (of type α →
(Success,CTree)) will produce the computed tree associated to its corre-
sponding subcomputation, if it succeeds.

Note that by the use of an equality constraint, the program becomes more
strict. Our transformation ensures that all computation trees built for a suc-
cessful computation are finite. Therefore the use of the strict equality in the
improved unwrap function will not introduce termination problems.

Using the improved definitions of wrap and unwrap the debugger now
correctly spots the wrong definition of last.

Entering debugger...

Considering the following basic facts:

1. main#lambda1(1) -> Success

10

Caballero and Lux

Are all of them valid? (y/n)

n

Considering the following basic facts:

1. last([1,2,3]) -> 1

Are all of them valid? (y/n)

n

Considering the following basic facts:

1. append([1], [2,3]) -> [1,2,3]

Are all of them valid? (y/n)

y

** Function last is incorrect (last([1,2,3]) -> 1) **

A more realistic example, which involves a non-trivial search, is the goal

main = unpack (head (bfs (λl → l =:= path graph B C)))

for the program Fig. 3.

Entering debugger...

Considering the following basic facts:

1. main#lambda1([B,C,A,B]) -> Success

Are all of them valid? (y/n)

n

Considering the following basic facts:

1. graph() -> [(A,B),(B,A),(B,D),(D,C),(C,B)]

2. path([(A,B),(B,A),(B,D),(D,C),(C,B)], B, C) -> [B,C,A,B]

Are all of them valid? (y/n)

n

Write the number of an erroneous basic fact in the list

2

Considering the following basic facts:

1. member((B,A), [(A,B),(B,A),(B,D),(D,C),(C,B)]) -> Success

2. path([(A,B),(B,A),(B,D),(D,C),(C,B)], C, A) -> [C,A,B]

Are all of them valid? (y/n)

n

Write the number of an erroneous basic fact in the list

2

Considering the following basic facts:

1. member((C,B), [(A,B),(B,A),(B,D),(D,C),(C,B)]) -> Success

2. path([(A,B),(B,A),(B,D),(D,C),(C,B)], A, B) -> [A,B]

11

Caballero and Lux

Are all of them valid? (y/n)

y

** Function path is incorrect

(path([(A,B),(B,A),(B,D),(D,C),(C,B)], C, A) -> [C,A,B]) **

5 Conclusions

We have presented in this paper some ideas that can be used to integrate an
important operational feature of the language Curry, the encapsulated search,
into a declarative debugger for wrong answers. The solution presented is
simple and has been introduced in the debugger readily and without affecting
the rest of the system, in particular the built-in coding of the primitive try.
The result of this integration can be found in the Münster Curry system,
which is available at http://danae.uni-muenster.de/\char‘~lux/curry.

As future work, other features as input/output should be included as part
of the compiler using similar ideas to those presented here.

Regarding the navigation phase, we plan to introduce an algorithm to re-
duce the number of questions asked to the oracle, not only avoiding repeated
questions but also questions entailed by previous ones, following the ideas
presented in [CR02]. At the moment only the erroneous instance of the erro-
neous program rule is displayed, which usually is enough to identify this rule
in the program, but this information must still be completed by including its
position.

An interesting point of research would be that of missing answers and its
relation to encapsulated search. Since any goal with a missing answer can be
converted easily to a failing goal, the primitive try can be used to convert any
missing answer in a wrong answer (namely the answer []) and maybe this
could be exploited in a debugger for missing answers in Curry.

References

[ACF01] M. Alpuente, J. Correa and M. Falaschi. A Debugging Scheme for
Functional Logic Programs. Proc. WFLP’2001, Kiel, Germany, September 13–
15, 2001. 1

[CLR00] R. Caballero, F.J. López-Fraguas and M. Rodŕıguez-Artalejo. Theoretical
Foundations for the Declarative Debugging of Lazy Functional Logic Programs.
Technical Report SIP-104-00, Dep. Lenguajes, Sistemas Informáticos y
Programación, July 2000. 2, 2

[CL+99] M. Comini, G. Levi, M.C. Meo and G. Vitello. Abstract Diagnosis. J. of
Logic Programming 39, 43–93, 1999. 1

[CR02] R. Caballero and M. Rodŕıguez-Artalejo. A Declarative Debugging System

12

http://danae.uni-muenster.de/char `~lux/curry

Caballero and Lux

for Lazy Functional Logic Programs. Electronic Notes in Theoretical Computer
Science. Volume 64. To appear. 2, 2, 5

[Han00] M.Hanus. Curry: An Integrated Functional Logic Language. Version 0.7.1,
June 2000. Available at http://www.informatik.uni-kiel.de/curry/report.html.
1, 2

[HS98] M.Hanus, F. Steiner. Controlling Search in Declarative Programs. In Proc.
PLILP/ALP’98, LNCS 1490, pp.374–390,1998. 1, 3

[LS99] F.J. López-Fraguas, and Jaime Sánchez Heznández. T OY a Multiparadigm
Declarative System, In Proc. RTA’99, LNCS 1631, Springer Verlag, 244–247,
1999.

[Lux99] W. Lux. Implementing Encapsulated Search for a Lazy Functional Logic
Language. In Proc. FLOPS 99, LNCS 1722, 100–113, 1999 1

[Nai97] L. Naish. A Declarative Debugging Scheme. Journal of Functional and Logic
Programming, 1997-3. 1

[NB95] L. Naish, Timothy Barbour. A Declarative debugger for a logical-functional
language. In Graham Forsyth and Moonis Ali, eds. Eight International
Conference on Industrial and Engineering Applications of Artificial Intelligence
and Expert Systems - Invited and additional papers, Vol. 2, pp. 91–99, 1995.
DSTO General Document 51. 2

[NB96] L. Naish and T. Barbour. Towards a Portable Lazy Functional Declarative
Debugger. Australian Computer Science Communications, 18(1):401–408, 1996.
1

[NF97] H. Nilsson, P. Fritzson. Algorithmic Debugging of Lazy Functional
Languages. The Journal of Functional Programming, 4(3):337–370, 1994. 1

[NS97] H. Nilsson and J. Sparud. The Evaluation Dependence Tree as a basis for
Lazy Functional Debugging. Automated Software Engineering, 4(2):121–150,
1997. 1, 2

[PW93] S. Peyton Jones, P. Wadler. Imperative Functional Programming. In Proc.
POPL’93, 123–127, ACM, 1993 3

[Pop98] B. Pope. Buddha. A Declarative Debugger for Haskell. Honors Thesis,
Department of Computer Science, University of Melbourne, Australia, June
1998. 1

[Sha82] E.Y. Shapiro. Algorithmic Program Debugging. The MIT Press, Cambridge,
Mass., 1982.

1

13

	Introduction
	Declarative Debugging of Wrong Answers in Lazy Functional-Logic Programs
	Encapsulated Search
	Declarative Debugging of Encapsulated Search
	Conclusions
	References

