
A New Proposal for Debugging Datalog
Programs 1

R. Caballeroa,2 Y. Garćıa-Ruiza,3 F. Sáenz-Pérezb,4

a Departamento de Sistemas Informáticos y Computación
Universidad Complutense de Madrid

Madrid, Spain

b Departamento de Ingenieŕıa del Software e Inteligencia Artificial
Universidad Complutense de Madrid

Madrid, Spain

Abstract

In this paper, we propose to apply declarative debugging to Datalog programs. Our approach relies on
program semantics rather than on the computation mechanism. The debugging process starts when the user
detects an unexpected answer. By asking questions about the intended semantics, the debugger looks for
incorrect program relations. While usual declarative debuggers for other languages are based on computation
trees, we show that graphs are more convenient structures for representing Datalog computations. The
theoretical framework is complemented by the implementation of a debugger for the deductive database
system DES, a publicly available open-source project.

Keywords: Declarative Debugging, Datalog Programs.

1 Introduction

The declarative programming paradigm is targeted to raise the semantic level of
programs, therefore isolating them from the computation model. Thus, program-
mers are intended to focus on a higher semantic level rather than on the level
corresponding to the underlying computation procedures.

Deductive database languages such as Datalog [9], which inherit the declarative
nature of the Logic Programming language Prolog [15], increase the gap between the
program semantics and the computations because the computation model of Data-
log is much more intricate than that of Prolog. The Prolog computation model is

1 This work has been funded by the projects TIN2005-09207-C03-03 and S-0505/TIC/0407.
2 Email: rafa@sip.ucm.es
3 Email: ygarciar@fdi.ucm.es
4 Email: fernan@sip.ucm.es

Electronic Notes in Theoretical Computer Science 216 (2008) 79–92

1571-0661/$ – see front matter © 2008 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.06.035

mailto:rafa@sip.ucm.es
mailto:ygarciar@fdi.ucm.es
mailto:fernan@sip.ucm.es
http://www.elsevier.com/locate/entcs

based on the SLD resolution principle [7], which deals with SLD computation trees,
whereas Datalog computation model is based on a number of proposals, ranging
from interpreters [17] to compilation to Prolog using magic sets [3]. The first pro-
posal needs some sort of fixpoint computations to solve queries, which is not the
computation model the user might have in mind. The second proposal makes things
even worse, in the sense that the program is transformed before applying SLD res-
olution. This semantic gap between program semantics and program execution
makes debugging Datalog programs a hard task if one tries to use existing tools for
debugging in a quite different level the user thinks about (for instance, using a trace
debugger in the level of the transformed program).

Our approach to debug Datalog programs is anchored to the semantic level,
which is a natural requirement every user imposes to development systems. We
propose a novel way of applying declarative debugging, also called Algorithmic De-
bugging (a term first coined in the logic programming field by E.H. Shapiro [12])
to Datalog programs, allowing to debug queries and diagnose missing (an expected
tuple is not computed) as well as wrong (a given computed tuple should not be
computed) answers with the same tool.

What a Datalog programmer would find useful is to catch program rules or
relations which are responsible for a mismatch between the intended semantics of
a query and its actual computed semantics. Our system, by means of a question-
answering procedure which starts when the user detects an unexpected answer for
some query, looks for those errors pointing to the program fragment responsible
for the incorrectness. For this procedure, we propose to use computation graphs
as a novel data structure for declarative debugging of Datalog programs. We find
that these graphs are more convenient for modeling program computations, instead
of computation trees, which have been typically used in declarative debuggers for
other languages (e.g., Prolog [12], Java [5] and Toy [4]).

With this aim we have implemented a working prototype for DES [11], a Datalog
system publicly available as an open-source project which was released in 2004, and
it has been mainly used in several universities for teaching deductive databases
since then. The current version with debugging capabilities can be downloaded and
tested on almost any platform.

The few existing proposals for debugging Datalog programs are usually based
on “imperative” debugging, that try to follow the computation model to find bugs.
These proposals are mainly based on forests of proof trees [2,18,14], which makes
debugging a trace-based task not so amenable to users. To our knowledge, the very
first work on this setting is due to [10], but a variant of SLD resolution is used by the
user to look for program errors, therefore imposing to traverse at least as many trees
as particular answers are obtained for any query. In a database framework, where
the answer can contain many individual values, this makes the task of debugging
quite cumbersome. In our setting, we deal with the set of values for a query as a
single entity, therefore reducing the complexity of the debugging task.

This paper is organized as follows. Section 2 introduces some definitions. Our
proposal of computation graph is defined in 3. Section 4 discusses how the com-

R. Caballero et al. / Electronic Notes in Theoretical Computer Science 216 (2008) 79–9280

putation graph can be used for debugging. Section 5 presents the debugger tool
integrated in the system DES. Finally, Section 6 summarizes conclusions from this
work and points out some future work.

2 Datalog Preliminaries

Definitions for Datalog mainly come from the field of Logic Programming. In this
section, we only introduce the concepts which are needed in our setting, referring
the reader to [7] for a more general presentation of Logic Programming.

We consider (recursive) Datalog programs with stratified negation [1,17], i.e.,
normal logic programs without function symbols. Stratification is imposed to ensure
a clear semantics when negation is involved, and function symbols are not allowed in
order to guarantee termination of computations, a natural requirement with respect
to a database user.

A term is either a variable or a constant symbol. An atom is p(t1, . . . , tn), where
p is an n-ary predicate symbol and ti are terms, 1 ≤ i ≤ n, which can also be written
as p(t̄n). A literal is either an atom or a negated atom. A positive literal is an atom,
and a negative literal is a negated atom. A negated atom is syntactically constructed
as not(A), where A is an atom. The atom contained in a literal L will be denoted
as atom(L). A rule R is an expression of the form A : −L1, . . . , Ln, where A is an
atom and Li are literals. All of the variables in a rule are assumed to be universally
quantified. Concerning the rule R, A is referred to as the head of R, L1, . . . , Ln as
its body, and Li as subgoals. Commas in bodies stand for conjunctions. A fact is a
rule with empty body and ground head. The symbol : − is usually dropped in this
case. A Datalog program is a finite set of Datalog facts and rules. In order to fit
with database notation, the term relation is used in lieu of predicate. A database
relation is, therefore, a set of rules with the same predicate symbol and arity. If
a relation is only defined with facts, it is called an extensional-database relation
(EDB), whereas it is otherwise called an intensional-database relation (IDB). A
query (term preferred in a deductive database context) or goal (term preferred in a
logic programming context) is a literal (i.e., an atom or a negated atom) which can
be solved by a Datalog system with respect to a given program. Analogously to
literals, we say that a positive query is an atom, and a negative query is a negated
atom. In contrast to facts, queries may contain variables.

Substitutions are defined as usual in logic programming. Subst denotes the set
of all the substitutions. We also assume the existence of a composition operation
between substitutions defined in the usual way and fulfilling the property (sθ)σ =
s(σ · θ) for all σ, θ ∈ Subst. Two formulae ϕ, ϕ′ are variants if ϕ = ϕ′θ with θ a
renaming. We use the notation fresh(ϕ) to represent a renaming of the formula ϕ

which replaces all its variables by new variables.
Datalog programs resemble Prolog programs as the program (adapted from [19])

in Figure 1 suggests, which will be used as a running example for the rest of the
paper. In Datalog programs, variables start with uppercase letters whereas con-
stants start with lowercase letters (e.g., X and nil, respectively, in the example).

R. Caballero et al. / Electronic Notes in Theoretical Computer Science 216 (2008) 79–92 81

% Pairs of non-consecutive elements in br

between(X,Z) : − br(X), br(Y), br(Z), X<Y, Y<Z.

% Consecutive elements in the sequence, starting at nil

next(X,Y) : − br(X), br(Y), X<Y, not(between(X,Y)).

next(nil,X) : − br(X), not(has preceding(X)).

% Values having preceding values in the sequence

has preceding(X) : − br(X), br(Y), Y>X. % error: it should be Y<X

% Values in an even position of the sequence, including nil

even(nil).

even(Y) : − odd(X), next(X,Y).

% Values in an odd position of the sequence

odd(Y) : − even(X), next(X,Y).

% Succeeds if the cardinality of the sequence is even

br is even : − even(X), not(next(X,Y)).

% Succeeds if the cardinality of the sequence is odd

br is odd : − odd(X), not(next(X,Y)).

% Sequence

br(a).

br(b).

Fig. 1. Example of Datalog program

Predicate symbols start with lowercase letters (e.g., between). Code remarks start
with % and apply up to the end of line.

The example program is intended to compute the parity of a given base rela-
tion br(X), i.e., it can determine whether the number of elements in the relation
(cardinality) is even or odd by means of the relations br_is_even, and br_is_odd,
respectively. The relation next defines an ascending chain of elements in br based
on their textual ordering, where the first link of the chain connects the distinguished
node nil to the first element in br. The relations even and odd define the even,
resp. odd, elements in the chain. Finally the relation has_preceding defines the
elements in br such that there are previous elements to a given one (the first element
in the chain has no preceding elements). The rule defining this relation includes an
intended error (fourth rule in the example) which will be used in forthcoming sec-
tions to show how it is catched by the declarative debugger. The symbol < denotes
a built-in relation checking if some element is less than another w.r.t. the predefined
term ordering. Observe that relations br_is_even, and br_is_odd are not range
restricted because variable Y occurs only in a negative literal, and that therefore
the program does not fulfill the usual safety conditions [17]. In fact, our setting
does not enforces the use of safe programs. Only the stratification requirement is
needed for the correctness of the debugging technique.

The semantics (i.e., the “meaning”) of a Datalog program can be given by ei-
ther the model-theoretic, proof-theoretic or fixpoint semantics. We focus on the

R. Caballero et al. / Electronic Notes in Theoretical Computer Science 216 (2008) 79–9282

model-theoretic semantics. In particular, we consider Herbrand interpretations and
Herbrand models, i.e., Herbrand interpretations that make every Herbrand instance
of the program rules logically true formulae.

Given a Herbrand model M, we define the meaning of a query Q in the context
of a program P as the set:

QM = {Qθ ∈ M}
with θ ∈ Subst. We call QM the answer for Q w.r.t. P .

In Logic Programming languages such as Prolog, the least Herbrand model can-
not be actually computed, because programs in general are non-terminating. Also
the use of negation as failure contributes to the lack of completeness of Prolog com-
putations. However, due to the use of stratified programs in Datalog, the existence
of a so-called supported model M is ensured [1]. M is a minimal Herbrand model of
program P that can be actually computed by a Datalog system. Thus, we assume
that our Datalog system implementation yields the value QM for any query Q.

Additionally, we use the term intended interpretation represented by I, to denote
the model the user has in mind for the program. The intended answer for a query
Q is accordingly defined as:

QI = {Qθ ∈ I}
Then, the user can focus on queries and compare the intended interpretation to

the minimal Herbrand model actually computed. We therefore speak of validity of
a computed query w.r.t. the intended model of a program when:

QM = QI

If given a program P we find some query Q s.t. QM �= QI , we have that P is an
incorrect program, which must include one or more incorrectly defined relations.

3 Computation Graphs

In this section, we define a suitable structure for representing Datalog computa-
tions. Usually in logic programming languages such as Prolog, the computations
are represented through some tree structure such as the SLD-tree [7]. In the case
of Datalog, we claim that a tree is not a convenient structure due to the different
treatment of recursive programs. For instance consider the program:

p(a).
r(b).
p(X) :- q(X),r(X).
q(X) :- p(X).

In Prolog, the SLD-tree for the goal p(X) will contain an infinite branch, rep-
resenting a non-terminating computation. However in Datalog the same goal is
terminating and returns the finite answer: {p(a)} because the computation mech-
anism detects the repetition of the subgoal p(x) and avoids the infinite loop. Thus,
our computation structure must represent finitely these situations, which can be
achieved by using a graph:

R. Caballero et al. / Electronic Notes in Theoretical Computer Science 216 (2008) 79–92 83

p(X) = {p(a)} q(X) = {q(a)}

The graph contains the two subgoals occurred during the computation together
with their respective answers. It also indicates that p(X) and q(X) are mutually
dependent. We will call such graph the computation graph for the goal w.r.t. the
program. Observe that this graph is different from the predicate dependency graph
[19] of the Datalog program, which show the connections between the relations from
a static point of view. In the example, the dependence graph will include a vertex
for the relation r connected to the vertex for p. However, our computation graph
depends on the initial goal and the subgoals that occur during the computation and
hence does not include any vertex for r.

The computation graph (CG in short) is a directed graph which only has one
connected component, and that can contain cycles in the case of queries involving
recursive predicates.

Each vertex of the CG contains all the information necessary for detecting its
validity w.r.t. the intended model of the program. Hence the information stored at
each vertex of the CG is the following:

- The query Q.

- The answer for the query.

Now we describe formally how the debugger builds a CG.

Definition 3.1 (Computation Graph) Given a Datalog program P and a query
Q the computation graph of Q w.r.t. P is defined as the value cg(P,Q) defined as
follows:

cg(P,Q)

Input:

• P : a stratified Datalog program.
• Q: a program query. It must be either of the form p(ān) or not(p(ān)), with p(ān)

an atom and p a relation defined in P .

Output: a directed graph (V,E), where V is a set of vertices of the form (Q = QM)
and E = {(u, v)|u, v ∈ V } is a set of edges.

Steps:

1 The first vertex v of the graph is associated to the initial query Q and is defined
as v := (p(ān) = Π) , with Π := p(ān)M. The set Π can be obtained directly
using the system to obtain the answer for the query p(ān).

2 V := {v}, E := ∅.
3 Let A be an auxiliary set containing the vertices that must be unfolded in order

to build the graph. Initially A := {v}.

R. Caballero et al. / Electronic Notes in Theoretical Computer Science 216 (2008) 79–9284

4 While A �= ∅ do:
i) Select any vertex u in A. A := A \ {u}. The vertex u must be of the form

(q(b̄k) = Πq) for some q, Πq, b̄k.
ii) Consider all the rules (disregarding facts) defining q: Rq1 , . . . , Rqs .

For each Rqi , 1 ≤ i ≤ s:
a) N := newVertices(q(b̄k),fresh(Rqi))
b) For each new vertex (Q = QM) ∈ N check whether exists already a

vertex (Q′ = Q′
M) ∈ V such that Q and Q′ are variants. There are two

possibilities:
• There exists such (Q′ = Q′

M). Then, E := E ∪ {(u, (Q′ = Q′
M))}. That

is, if the vertex already exists we simply add a new edge from u.
• Otherwise, V := V ∪ {(Q = QM)}, A := A ∪ {(Q = QM)}, and E :=

E ∪ {(u, (Q = QM))}.

newVertices(A,R)
Input:

• A: An atom of the form q(b̄k).
• R: A program rule of the form qi(tn) :− L1, . . . , Lm.

Output: a set S of vertices.

Steps:

1 If θ := m.g.u.(q(b̄k), qi(tn)) does not exist return ∅.
2 Otherwise, for each literal Lj in the right-hand side of rule R consider the next

two possibilities:
i) j = 1. Then v1 := (atom(L1)θ = Π1), where Π1 := (atom(L1)θ)M. S :=

{v1}. v1 is the vertex associated with the first literal L1 .
ii) If j > 1, let δ1, . . . , δr be all the substitutions such that:

Lhθδ1 ∈ M, . . . , Lhθδr ∈ M , h = 1, . . . , j − 1

This means that the first j−1 literals have succeeded for each substitution
θδ1, . . . , θδr. Then the following new r vertices associated with the literal
Lj are defined

vj1 := (atom(Lj)θδ1 = Πj1) ... vjr := (atom(Lj)θδr = Πjr)

with Πj1 := (atom(Lj)θδ1)M, . . . , Πjr := (atom(Lj)θδr)M.
Finally set S := S ∪ {vj1 , . . . , vjr}, stating that we have created r new

nodes.

End of Definition

Observe that if a relation p is only defined by facts (i.e., s = 0 at step 4.ii) of
the cg algorithm), the CG only contains one vertex, and has no edges. A CG of the
query br is even w.r.t the program in Figure 1 is presented in Figure 2 (ignore the
bounded and colored vertices at the moment). For instance the vertex even(X) = {

R. Caballero et al. / Electronic Notes in Theoretical Computer Science 216 (2008) 79–92 85

even(X) = { even(nil) }

odd(X) = { odd(b) }next(b,X) = {}

br_is_even = { }

next(nil,Y) = { next(nil,b) }

br(nil) = {}

br(a) = { br(a) }

br(X) = { br(a), br(b) }

has_preceding(a) = {has_preceding(a)} has_preceding(b) = {}

br(b) = { br(b) }

Fig. 2. Example of Computation Graph

even(nil) } includes the answer even(nil) for the query even(X). The relation
even is defined through one fact and one rule. The fact does not appear in the figure
(they do not create new subgoals), and the rule yields two new vertices, one for each
literal in its right-hand side. The first one, namely odd(X) , includes an answer with
one result. This result has an associated substitution δ1 = {X �→ b}. The second
vertex corresponds to next(X,Y)δ1, which produces an empty answer. Notice that
there is no edge from vertex next(b,X) = { } to any vertex corresponding to the
relation between, although between occurs in the rhs of the first rule defining next.
The reason is that there is not exist a substitution δ such that

br(b)δ ∈ M ∧ br(Y)δ ∈ M ∧ (b < Y)δ ∈ M

i.e. the first three literals for this clause do not succeed for any substitution δ. Also
observe that there is no vertex corresponding to the symbol < in the graph, because
it is a primitive built-in relation and it is hence assumed correct by the debugger.

4 Declarative Debugging with CG’s

In this section, we show how the computation graph is used by the debugger in
order to detect incorrectly defined relations.

The debugging process starts when the user finds some unexpected answer for
a query, i.e., some initial symptom. For instance, in the case of the program in
Figure 1, the user expects that the answer for the query br is even should be

R. Caballero et al. / Electronic Notes in Theoretical Computer Science 216 (2008) 79–9286

{br is even}, because the relation br contains two elements: a and b. However,
the answer returned by the system is { }, which means that the corresponding
goal was unsuccessful. Therefore, the user will start the debugger. The debugger
proceeds by following the stages:

(i) First the system ensures that the computation for the goal is up to date. Then,
it generates a suitable computation graph that represents the computation. In
the case of our running example and the query br is even, the CG is displayed
in Figure 2. This first phase is automatically performed by the tool.

(ii) Second, the CG obtained in the previous phase is traversed asking to the user
about the validity of some vertices looking for a buggy vertex. A vertex is
called buggy when it is non-valid but all its immediate descendants are valid.
A buggy vertex always corresponds to an incorrectly defined relation, which is
pointed out by the debugger as the cause of the error.

Therefore, the debugger will ask the user questions about the validity of certain
vertices of the CG w.r.t. to the intended interpretation I of the program P . For
instance, the intended interpretation of the program of the Figure 2 is:

I = { br is even, even(nil), even(b), odd(a), next(nil,a), next(a,b),

has preceding(b), br(a), br(b) }
The debugger assumes that the user knows whether an instance of a query is in I,

i.e., that the user can determine the answer for any query. For instance, a possible
question could be Is odd(X)={odd(b)} valid? The question must be understood
as Is {odd(b)} the expected answer for the query odd(X)?. The answer will be no
because the expected answer for a query odd(X) is {odd(a)}, because a is the only
element of the sequence a,b that is in an odd position.

We can distinguish two reasons for detecting that a computed answer QM for a
query Q is incorrect:

(i) There exists σ ∈ Subst s.t. Qσ ∈ M but Qσ /∈ I. Then QM is called
a wrong answer. For instance, the answer {has preceding(a)} for the query
has preceding(a) in the CG of Figure 2 contains a wrong answer, because a has
no preceding value in the intended interpretation.

(ii) There exists σ ∈ Subst s.t. Qσ ∈ I but Qσ /∈ M. Then QM is called a missing
answer. For instance, the vertex even(X)={even(nil)} in the Figure 2 contains
a missing answer because for σ = {X �→ b} we have even(X)σ = even(b), and
even(b) ∈ I but even(b) /∈ M.

Observe that the two errors can exist at the same time: odd(X) = {odd(b)} is
both a wrong answer (odd(b) should not be in the answer) and a missing answer
(odd(a) should be in the answer). Declarative debuggers usually require the user to
distinguish both types of errors in order to initiate the debugging process. These
types of errors can require even different types of different computation structures.
An advantage of our approach is that this distinction is not needed, and that the
same structure, the CG is valid for both types of errors.

R. Caballero et al. / Electronic Notes in Theoretical Computer Science 216 (2008) 79–92 87

In fact, our approach does not match the general scheme proposed by L. Naish
in [8] for declarative debugging, because it is based on a graph rather than on a
tree. However, some of the basic results are still valid. For instance the correctness
of the technique:

Theorem 4.1 Any buggy vertex in a CG corresponds to an incorrectly defined re-
lation.

The informal reasoning behind this result is easy: since a buggy vertex is an
incorrect vertex, this means that it contains an incorrect answer for its associated
query. Also, in the graph construction algorithm, it can be checked that the im-
mediate descendants of the vertex are the subqueries whose result were needed to
produce such incorrect answers. But, if the subqueries returned correct values, the
error must come from the relation itself, which is therefore incorrectly defined.

In the CG of the Figure 2 the incorrect vertices are surrounded by a box, while
the two buggy vertices are contained in a colored box. Both buggy vertices cor-
respond to the relation has preceding, which corresponds to the only incorrectly
defined relation of the program of Figure 1.

Another nice property of the general scheme based on computation trees is
completeness: every computation tree with an incorrect node contains a buggy
node. Unfortunately, this result does not hold in our setting. Consider for instance
the program:

p(X) : − q(X).

q(X) : − p(X).
p(X) = { } q(X) = { }

The CG, displayed at the right of the program will contain two vertices, both
displaying the empty answer. Imagine also that either p or q is an incorrectly defined
relation, because the user forgot to include in the program either the fact p(a) or
q(a). In either of theses cases I = {p(a), q(a)}. Then, we will have a CG with two
incorrect vertices and with no buggy vertex. In this case, our debugger will not
point out any relation, but a set of connected relations as the cause of the error.
Fortunately, this situation that leads to less informative diagnosis, is not usual in
common Datalog programs.

5 Implementation

The Datalog Educational System (DES) is an open-source free Prolog-based imple-
mentation of a basic deductive database with stratified negation with Datalog as
a query language. The system is implemented on top of Prolog and can be used
from several Prolog interpreters (Ciao Prolog, GNU Prolog, SICStus Prolog, and
SWI Prolog) running on several operating systems (OSs). Moreover, executables
for several OSs (Windows 98 and later, and SunOS/Solaris) are also provided. It
was aimed to have a simple, interactive, multiplatform, and affordable system for
students and researchers. DES 1.3.0 is the current release, which enjoys full re-
cursive evaluation with memoization techniques and stratified negation. DES is

R. Caballero et al. / Electronic Notes in Theoretical Computer Science 216 (2008) 79–9288

implemented with the seminar ideas found in [6,16], that deal with termination
issues of Prolog programs. These ideas have been already used in the deductive
database community. Our implementation uses the concept of extension table for
achieving a top-down driven bottom-up approach. In its current form, it can be
seen as an extension of the work in [6] in the sense that, in addition, we deal with
negation and undefined (although incomplete) information (cfr. [11] for further de-
tails about undefinedness). Once a query is computed, the extension table holds the
computed meaning of the program restricted to the query, i.e., only the meanings
of needed relations for computing the meaning of the query are computed.

We have implemented a debugger tool in the DES system based on the ideas
presented in previous sections. Next, we describe some of its features.

As we have seen in Section 4, the debugging process consists of two phases.
During the first phase, the tool builds a CG for the initial query Q w.r.t. the
program P . This phase, in turn, can be divided into two parts:

(i) The debugger uses the system DES in order to produce the extension table for
Q w.r.t. P .

(ii) The CG is built following the description given in Section 3. The answers
Π at each vertex are obtained from the extension table. This corresponds to
assuming that the system computes the supported Herbrand model M. As we
explained in Section 1, this is possible due to the requirements of stratification
imposed to our Datalog programs.

The second phase consists of traversing the CG in order to find either a buggy
vertex or a set of related incorrect vertices. The vertex associated to the initial query
Q is marked automatically as non-valid by the debugger. The rest of the vertices are
marked initially as unknown. In order to minimize the number of questions asked
by a declarative debugger, several traversing strategies have been studied [4,13].
However, these strategies are only valid for declarative debuggers based on trees
and not on graphs and new strategies are still to be investigated for this structure.
Nevertheless, the currently implemented strategy already contains some ideas of
how to minimize the number of questions in a CG:

• It firstly asks about the validity of vertices that are not part of a cycle, in order to
find a buggy vertex if it exists. Only when this is no longer possible the vertices
that are part of cycles are visited.

• Each time the user indicates that a vertex (Q = Π) is valid, i.e., the validity of
the answer Π for the subquery Q is ensured, the tool changes to valid all the
vertices with associated queries of the form Qθ, with θ ∈ Subst.

• Each time the user indicates that a vertex (Q = Π) is non-valid, the tool changes
to non-valid all the vertices with associated queries Q′, with Q = Q′θ, θ ∈ Subst.

The two last items help to reduce the number of questions deducing automati-
cally the validity/non-validity of some vertices from the validity/non-validity of oth-
ers. For instance, in Figure 2, the validity of the vertices containing br(a)={br(a)}
and br(nil)={} can be deduced automatically from the validity of the vertex br(X)=

R. Caballero et al. / Electronic Notes in Theoretical Computer Science 216 (2008) 79–92 89

{br(b),br(a) }. The soundness of these deductions is established by the following
proposition:

Proposition 5.1 Let Q be a query, let QI be the answer of Q w.r.t. the intended
interpretation I, and let θ be a ground substitution, θ ∈ Subst. Then:

(i) If Q = QI is valid, then Qθ = QθI is valid.

(ii) If Q = Q′θ for some Q′ and Q = QI is non-valid, then Q′ = Q′
I is non-valid.

Proof.

(i) If Q = QI is valid, then for all σ ∈ Subst, Qσ ∈ I ⇐⇒ Qσ ∈ M. Thus, for all
σ′, (Qθ)σ′ ∈ I ⇐⇒ (Qθ)σ′ ∈ M simply considering σ = (σ′ · θ).

(ii) If Q = Q′θ for some Q′ and Q = QI is non-valid, then there exists σ ∈ Subst

s.t. one of the two possibilities hold:
(a) Qσ ∈ M but Qσ /∈ I.
(b) Qσ ∈ I but Qσ /∈ M.

Hence, QM is either a wrong or a missing answer. By defining σ′ = (σ · θ)
we have that Q′σ′ is also a wrong or missing answer.

�

A debugger session for the query br is even of our running example:

DES> /debug br_is_even
Debugger started ...
Is br(b) = {br(b)} valid(v)/non-valid(n) [v]? v
Is has_preceding(b) = {} valid(v)/non-valid(n) [v]? n
Is br(X) = {br(b),br(a)} valid(v)/non-valid(n) [v]? v

! Error in relation: has_preceding/1
! Witness query: has_preceding(b) = { }

In this particular case, only three questions are necessary to find out that the
relation has preceding is incorrectly defined.

6 Conclusions and Future Work

In the previous sections we have presented a framework for the declarative debugging
of Datalog programs. The proposed technique finds incorrect relation definitions
in Datalog programs by comparing the results of the computations to the intended
interpretation of each relation, which is assumed to be known by the user. Thus, our
technique relies on the program semantics for debugging, disregarding the imple-
mentation issues. In Datalog this is not only an advantage; it is almost a necessity.
The Datalog computations are based on operational features or program transfor-
mations that make the execution very difficult to follow and understand using the
normal trace facilities included in logic languages such as Prolog.

We have also defined a suitable structure for representing the computations, the
computation graphs. This represents a novelty w.r.t. the traditional presentation of

R. Caballero et al. / Electronic Notes in Theoretical Computer Science 216 (2008) 79–9290

declarative debugging, which is based on trees rather than on graphs. Nevertheless,
declarative debugging using computation graphs lacks some of the nice properties
of usual declarative debugging such as completeness. We have shown that indeed
in some Datalog programs is not possible to point out a single relation as the cause
of an unexpected computation result, and that in those programs the debugger can
only detect sets of mutually dependent relations as possible error sources, meaning
that one or more of these relations are incorrectly defined. However, these situations
are not common in practice.

It is important to emphasize that the debugger can be used for diagnosing errors
starting either from a wrong or from a missing answer. Since Datalog programs are
terminating, we can claim that the presented technique covers all the possible errors
that produce unexpected answers in Datalog programs. This makes a difference
w.r.t. other declarative debuggers that are limited to a particular kind of errors
(i.e., only missing or only wrong answers). The ideas have been implemented in a
working prototype included as part of the Datalog system DES.

As future work we plan to represent graphically the computation graph. This will
help the user to find the error more easily, inspecting the graph and choosing freely
the more convenient vertices to start the debugging process. Another improvement
can be obtained by allowing the user to provide more informative answers. For
instance, if the debugger knows that an answer is not only non-valid but wrong, i.e.,
it contains an unexpected atom, it can use this information to skip some questions;
in particular, the questions involving children with empty answers, which are always
valid w.r.t. wrong answers.

References

[1] Apt, K. R., H. A. Blair and A. Walker, Towards a theory of declarative knowledge (1988), pp. 89–148.

[2] Arora, T., R. Ramakrishnan, W. G. Roth, P. Seshadri and D. Srivastava, Explaining program execution
in deductive systems, in: Deductive and Object-Oriented Databases, 1993, pp. 101–119.

[3] Beeri, C. and R. Ramakrishnan, On the power of magic, 1987, pp. 269–284.

[4] Caballero, R., A declarative debugger of incorrect answers for constraint functional-logic programs,
in: WCFLP ’05: Proceedings of the 2005 ACM SIGPLAN workshop on Curry and functional logic
programming (2005), pp. 8–13.

[5] Caballero, R., C. Hermanns and H. Kuchen, Algorithmic Debugging of Java Programs, Electronics
Notes in Theorical Computer Science (2007), in Press.

[6] Dietrich, S. W., Extension tables: Memo relations in logic programming., in: SLP, 1987, pp. 264–272.

[7] Lloyd, J., “Foundations of Logic Programming,” Springer Verlag, 1984.

[8] Naish, L., A Declarative Debugging Scheme, Journal of Functional and Logic Programming 3 (1997).

[9] Ramakrishnan, R. and J. Ullman, A survey of research on Deductive Databases, The Journal of Logic
Programming 23 (1993), pp. 125–149.

[10] Russo, F. and M. Sancassani, A declarative debugging environment for Datalog, in: Proceedings of the
First Russian Conference on Logic Programming (1992), pp. 433–441.

[11] Sáenz-Pérez, F., Datalog Educational System. User’s Manual, Technical Report 139-04, Facultad de
Informática, Universidad Complutense de Madrid (2004), http://des.sourceforge.net/.

R. Caballero et al. / Electronic Notes in Theoretical Computer Science 216 (2008) 79–92 91

[12] Shapiro, E., “Algorithmic Program Debugging,” ACM Distiguished Dissertation, MIT Press, 1982.

[13] Silva, J., A Comparative Study of Algorithmic Debugging Strategies, in: Proc. of International
Symposium on Logic-based Program Synthesis and Transformation LOPSTR 2006, 2007, pp. 134–140.

[14] Specht, G., Generating explanation trees even for negations in deductive database systems, in:
Proceedings of the 5th Workshop on Logic Programming Environments, Vancouver, Canada, 1993.

[15] Sterling, L. and E. Shapiro, “The art of Prolog: advanced programming techniques,” MIT Press,
Cambridge, MA, USA, 1986.

[16] Tamaki, H. and T. Sato, Old resolution with tabulation, in: Proceedings on Third international
conference on logic programming (1986), pp. 84–98.

[17] Ullman, J., “Database and Knowledge-Base Systems Vols. I (Classical Database Systems) and II (The
New Technologies),” Computer Science Press, 1995.

[18] Wieland, C., Two explanation facilities for the deductive database management system DeDEx., in:
H. Kangassalo, editor, ER (1990), pp. 189–203.

[19] Zaniolo, C., S. Ceri, C. Faloutsos, R. T. Snodgrass, V. S. Subrahmanian and R. Zicari, “Advanced
Database Systems,” Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1997.

R. Caballero et al. / Electronic Notes in Theoretical Computer Science 216 (2008) 79–9292

	Introduction
	Datalog Preliminaries
	Computation Graphs
	Declarative Debugging with CG's
	Implementation
	Conclusions and Future Work
	References

