
Declarative Debugging of Missing Answers in
Constraint Functional-Logic Programming

Rafael Caballero, Mario Rodŕıguez Artalejo, and
Rafael del Vado Vı́rseda ?

Dep. Sistemas Informáticos y Computación, Univ. Complutense de Madrid
{rafa,mario,rdelvado}@sip.ucm.es

It is well known that constraint logic and functional-logic programming languages
have many advantages, and there is a growing trend to develop and incorporate
effective tools to this class of declarative languages. In particular, debugging tools
are a practical need for diagnosing the causes of erroneous computations. Re-
cently [1], we have presented a prototype tool for the declarative diagnosis of
wrong computed answers in CFLP (D), a new generic scheme for lazy Constraint
Functional-Logic Programming which can be instantiated by any constraint do-
main D given as parameter [2]. The declarative diagnosis of missing answers
is another well-known debugging problem in constraint logic programming [4].
This poster summarizes an approach to this problem in CFLP (D). From a
programmer’s viewpoint, a tool for diagnosing missing answers can be used to
experiment wether the program rules for certain functions are sufficient or not
for computing certain expected answers. For example, consider a CFLP (H)-
program fragment written in T OY [3], where strict equality and disequality
constraints are used for generating family relationships based on the basic fami-
ly facts shown in Fig. 1.

Fig. 1. Missing family relationships

type person = [char]

motherOf, fatherOf, sonOf, daughterOf, brotherOf, sisterOf :: person -> person
motherOf X = Y <== maleChildOf Z Y == X // femaleChildOf Z Y == X
brotherOf X = Y <== maleChildOf (fatherOf X) (motherOf X) == Y, Y /= X
sonOf X = maleChildOf X Y // maleChildOf Y X
% Analogously for the other basic family relationships

basicFamilyRelation :: person -> person
basicFamilyRelation = motherOf // fatherOf // sonOf // ... // brotherOf // sisterOf

familyRelation :: person -> person
familyRelation = basicFamilyRelation // basicFamilyRelation . basicFamilyRelation

(//) :: A -> A -> A (.) :: (B -> C) -> (A -> B) -> (A -> C)
X // Y = X (F . G) X = F (G X)
X // Y = Y

?
The authors have been partially supported by the Spanish National Projects MERIT-FORMS
(TIN2005-09207-C03-03) and PROMESAS-CAM (S-0505/TIC/0407).



In order to find a family relationship between alice and alan, a user can ins-
pect the computed answers for the goal familyRelation == R, R "alice" ==
"alan", involving higher-order patterns. Different diagnosis for missing answers
are possible. For instance, the answer R -> sonOf . brotherOf . motherOf
(i.e., alan is son of a brother of the mother of alice) may be missed due to an in-
complete definition of familyRelations, which could be extended by adding the
new rule familyRelation = familyRelation . basicFamilyRelation; while
other answers such as R -> cousinOf or R -> sonOf . uncleOf may be missed
due to an incomplete definition of basicFamilyRelation, which could be ex-
tended like this: basicFamilyRelation = ... // cousinOf // uncleOf.

Declarative programming paradigms such as the CFLP (D) scheme involve
complex operational details such as constraint solving, lazy evaluation of possibly
higher-order and non-deterministic functions, logical variables etc. Therefore,
declarative debugging is a better option than debugging techniques which rely on
the inspection of low-level computation traces. Declarative debugging requires
suitable trees to represent computations. Inspired by [1] and [4], we propose so-
called Negative Proof Trees (shortly, NPT s) as computation trees for declarative
debugging of missing answers in CFLP (D). NPT s represent logical proofs in
a Constrained Negative Proof Calculus. The root of a NPT has attached an
answer collection statement of the form G ⇒ ∨

i∈I Si, where G is an initial goal
and Si are all the observed computed answers. Internal nodes have attached
answer collection statements ftn → t 2 S ⇒ ∨

i∈I Si; these correspond to all
the computed answers Si for an intermediate goal ftn → t 2 S, asking for
results of the function call ftn which match t and satisfy the constraints within
S. NPT s are built in such a way that the validity of the collection statement
at each node follows from the collection statements at their children, under the
assumption that the function definition relating the parent node to the children
nodes is complete. As usual, declarative diagnosis proceeds by finding a buggy
node which is invalid but such that all its children are valid. Every such buggy
node points to an incomplete function definition. The search for a buggy node
can be implemented with the help of an external oracle (usually the user with
some semiautomatic support) who has a reliable declarative knowledge of the
valid collection statements, the so-called intended interpretation. A prototype
under development is available at http://gpd.sip.ucm.es/rafa/missing.

References

1. R. Caballero, M. Rodŕıguez-Artalejo and R. del Vado-Vı́rseda. Declarative Diag-
nosis of Wrong Answers in Constraint Functional-Logic Programming. In Proc. of
ICLP’06, volume 4079 of Springer LNCS, pp. 421–422, 2006.

2. F.J. López-Fraguas, M. Rodŕıguez-Artalejo and R. del Vado-Vı́rseda. A New Generic
Scheme for Functional Logic Programming with Constraints. Journal of Higher-
Order and Symbolic Computation, Volume 20, Issue 1/2, pp. 73–122, 2007.

3. F.J. López-Fraguas, J. Sánchez-Hernández. T OY: A Multiparadigm Declarative
System. In Proc. of RTA’99, volume 1631 of Springer LNCS, pp 244–247, 1999.
System and documentation available at http://toy.sourceforge.net.

4. A. Tessier and G. Ferrand. Declarative Diagnosis in the CLP Scheme. Volume 1870
of Springer LNCS, Chapter 5, pp. 151–174, 2000.


