
DDT : A Declarative Debugging Tool for
Functional-Logic Languages

Rafael Caballero and Mario Rodŕıguez-Artalejo

Dpto. de Sistemas Informáticos y Programación, Universidad Complutense de Madrid
e-mail: {rafa,mario}@sip.ucm.es ?

Abstract. We present a graphical tool for the declarative debugging of
wrong answers in functional-logic languages. The tool, integrated in the
system T OY, can be used to navigate a computation tree corresponding
to some erroneous computation. During the navigation the users can ei-
ther follow a fixed strategy or move freely providing information about
the validity of the nodes as they like. We show by means of examples
how this flexibility can reduce both the number and the complexity of
the questions that the user must consider w.r.t. the usual top-down navi-
gation strategy. Moreover, the tool includes some extra features that can
be used to automatically simplify the computation trees.

1 Introduction

The idea of declarative debugging was first proposed by E.Y. Shapiro [18] in the
field of Logic Programming, and has been developed not only in this paradigm
[11, 7] but also in constraint-logic programming [20], functional programming
[15, 14, 17], and functional-logic programming [5, 4, 6].
The overall idea in all the cases is the same, as pointed out by Lee Naish in [13].
The debugging starts when some erroneous computation, the so-called initial
symptom, is found, and can be described as a two stages process:
- First, the declarative debugger builds a suitable computation tree for the initial
symptom. Each node in this tree keeps the result of some subcomputation and
can be associated to the fragment of code responsible for it. In particular, the
root represents the (wrong) result of the main computation. The children of a
given node must correspond to the intermediate subcomputations needed for
obtaining the result at such node. This phase is automatically performed by the
debugger; the user’s assistance is only required to detect the initial symptom.
- Once the tree is obtained it is navigated looking for a buggy node, i.e. a node
with an erroneous result whose children nodes have correct results. Such node
is associated to a fragment of code that has produced an erroneous output from
correct inputs, and will be pointed out by the debugger as one bug in the pro-
gram. In order to check whether the nodes are correct or not, some external
oracle, generally the user, is needed.
? Work partially supported by the Spanish CYCIT (project TIC2002-01167 ’MELO-

DIAS’).

One of the main criticisms about the use of this technique w.r.t. other debugging
methods such as abstract diagnosis [2, 1], is the amount and complexity of the
questions that the user must answer during the navigation phase. The problem
has been considered in (constraint) logic programming [18, 20], but has received
little attention in functional and functional-logic programming, where most of
the works are devoted to the definition of suitable computation trees and to de-
vise mechanisms for their implementation. The declarative debuggers proposed
in functional and functional-logic programs, to the best of our knowledge, per-
form a top-down traversal of the tree during the navigation phase. As we will
see this is only satisfactory for trees containing a buggy node near the root;
otherwise the number and complexity of the questions can make the debugging
process unrealistic.

In this paper we DDT (an acronym for Declarative Debugging T ool), a graph-
ical declarative debugger included as part of the lazy functional-logic system
T OY [12]. However, the ideas and techniques presented here are also valid for
the declarative debugging of wrong answers in other lazy functional-logic lan-
guages such as Curry [10] or lazy functional languages as Haskell [16].

DDT allows the user either to navigate freely the computation tree or to select
one of the default strategies provided by the tool to guide the navigation. In the
paper we show how these possibilities can be used to reduce both the number and
the complexity of the questions that the user must consider during the debugging
process. Moreover, DDT also incorporates two techniques for simplifying the
computation tree, the first one based on the notion of entailment proposed in [6],
and the second one based on the use of another program as a (generally partial)
correct specification of the intended program semantics. These two features can
be used to determine the validity of some nodes of the computation tree in
advance, thus simplifying the role of the user during the navigation phase.

The structure of the paper is as follows: next Section introduces some preliminary
concepts and presents the general aspect of the tool. Section 3 explains by means
of an example how the flexibility of the navigation in DDT can be used to
detect buggy nodes more easily. Section 4 discusses the strategies provided by
the system, while Section 5 presents the two techniques used to simplify the
computation tree mentioned above. Finally Section 6 concludes and points to
some planned future work.

DDT is part of the distribution of the T OY system, which is available at
http://titan.sip.ucm.es.

2 Initial Concepts

As we said in the previous section, DDT is integrated in the lazy FLP lan-
guage T OY [12]. In this section we first recall some basics about the language
and illustrate them with an example. Then some basic notions and properties
regarding computation trees are presented.

2.1 The T OY language

Programs in T OY can include data type declarations, type alias, infix operators
declarations, function type declarations, and defining rules for functions symbols.
Before describing the structure of the defining rules we must define some initial
notions such as expressions and patterns. A more detailed description of the
syntax of the language can be found in [12].
The syntax of partial expressions e ∈ Exp⊥ is e ::= ⊥ | X | h | (e e′) where X
is a variable and h either a function symbol or a data constructor. Expressions
of the form (e e′) stand for the application of expression e (acting as a function)
to expression e′ (acting as an argument). In the rest of the paper the notation
e e1 e2 . . . en (or even e en) is used as a shorthand for (. . . ((e e1) e2) . . .)en).
Similarly, the syntax of partial patterns t ∈ Pat⊥ ⊂ Exp⊥ can be defined as
t ::=⊥ | X | c t1 . . . tm | f t1 . . . tm where X represents a variable, c a data
constructor of arity greater or equal to m, and f a function symbol of arity
greater than m, while the ti are partial patterns for all 1 ≤ i ≤ m. We define
the approximation ordering v as the least partial ordering over Pat⊥ satisfying
the two following properties:
- ⊥ v t, for all t ∈ Pat⊥.
- h tm v h sm if h tm, h sm ∈ Pat⊥ and ti v si for all 1 ≤ i ≤ m.
Expressions and patterns without any occurrence of ⊥ are called total.
The defining rules for a function f are composed of a left-hand side, a right-hand
side, an optional condition, and some optional local definitions:

(R) f t1 . . . tn︸ ︷︷ ︸
left-hand side

= r︸︷︷︸
right-hand side

⇐ C︸ ︷︷ ︸
condition

where LD︸ ︷︷ ︸
local definitions

the condition has the form C ≡ e1 == e′1, . . . , ek == e′k, while the local
definitions are LD ≡ {s1 ← a1; . . . ; sm ← am}, where ei, e

′
i, ai and r are total

expressions, the tj , sj are total patterns with no variable occurring more than
once in different tk, tl or in different sk, sl, and no variable in si occurring in
aj for 1 ≤ j < i ≤ m. Roughly, the intended meaning of a program rule like
(R) is that a call to the function f can be reduced to r whenever the actual
parameters match the patterns ti, using the local definitions LD, and ensuring
that the conditions ei == e′i are satisfied. A condition e == e′ is satisfied by
evaluating e and e′ to some common total pattern.
A formal semantic calculus for T OY programs is described in [8, 9], and has been
adapted to the declarative debugging of wrong answers in [5, 6]. As we proved in
[5, 6] a simplification of the proof trees in this semantic calculus can be employed
as suitable computation trees for the declarative debugging of wrong answers in
lazy functional-logic languages. The nodes of such computation trees are always
basic facts of the form f t1 . . . tn → t, with f a function symbol of arity n
and t, t1, . . . tn ∈ Pat⊥. The idea is that a basic fact f t1 . . . tn → t can be
proved w.r.t. some program P iff the pattern t approximates the value of the
function call (f t1 . . . tn) in P . Since the value ⊥ approximates all the values

fib = [1, 1 | fibAux 1 1]
fibAux N M = [N+M | fibAux N (N+M)]

goldenApprox = (tail fib) ./. fib

infixr 20 ./.
[X | Xs] ./. [Y | Ys] = [X/Y | Xs ./. Ys]

tail [X|Xs] = Xs

take 0 L = []
take N [X|Xs] = [X| take (N-1) Xs] <== N>0

main R = true <== take 5 goldenApprox == R

Fig. 1. Approximating the Golden Ratio

in our semantics, trivial basic facts of the form f t1 . . . tn → ⊥ always can be
proved. In [5, 6] we also proved that any buggy node in these computation trees
its associated with some erroneous function rule of the program, in fact with the
function rule used to prove the basic fact labelling the node. The intended model
of a program P is the set I of basic facts that the user expects to be provable
w.r.t. P . A node of the computation tree is correct if its basic fact belongs to I,
and incorrect otherwise. Correct nodes are also called valid w.r.t. I.

We will assume that every program P includes a special program rule main of the
form main X1 . . . Xk = true <== C , where {X1, . . . , Xk}, k ≥ 0, is the set
of variables occurring in the condition C. The system will compute substitutions
σ, called answers, of patterns for variables such that dom(σ) ⊆ { X1, . . . , Xk},
meaning that the basic fact (main X1 . . . Xk)σ → true can be proved w.r.t.
P . Notice that this notion of goal, suitable for this work, is compatible with
actual goals in T OY which are of the form: e1 == e′1, . . . , ek == e′k, simply by
assuming that the goal is the condition of an implicit program rule for main.

2.2 An Example

Figure 1 shows a T OY program whose purpose is to approximate the number
1+
√

5
2 , known as the golden ratio, by using the Fibonacci sequence 1, 1, 2, 3, 5, . . .,

where each term in the sequence (after the second) is the sum of the two that
immediately precede it. If we call fib(i) to the i-th term of this sequence, the
following property holds:

lim
n→∞

fib(n + 1)
fib(n)

=
1 +

√
5

2

The program contains a function fib that represents an infinite list containing the
Fibonacci sequence. This function uses an auxiliary function fibAux. Given two
integer values X0 and X1, the function call fibAux X0 X1 is expected to compute
the infinite list [X2, X3, . . .], such that Xk = Xk−2 + Xk−1, for any k ≥ 2.
Function goldenApprox computes the infinite list [fib(2)/fib(1), fib(3)/fib(2), . . .]
using the infix operator ./., that returns the result of dividing two infinite lists
term by term. The meaning of the rest of the functions should be clear from the
context. Some basic facts included in the intended model I of the program are:

I = { . . . , fib → ⊥, . . . ,fib → [1 | ⊥], . . . , fib → [1,1,2,3,5,8 | ⊥], . . . ,
. . . , fibAux 1 1 → [2, 3, 5, | ⊥], . . . , fibAux 10 20 → [30,50,80,120 | ⊥], . . . ,
. . . , main [1, 2, 1.5, 1.66, 1.6] → true, . . . }

among others. In particular, the basic fact main [1, 2, 1.5, 1.66, 1.6] → true is
expected since [1/1, 2/1, 3/2, 5/3, 8/5] = [1, 2, 1.5, 1.66, 1.6] (rounding to two
decimals for simplicity) is the list of the fifth first approximations to the golden
ratio using the Fibonacci sequence. However, the system computes the answer
σ = {R 7→ [1, 2, 1.5, 1.33, 1.25]}. This is a wrong answer, since main Rσ → true is
not in the intended model of the program, and constitutes the initial symptom
showing that there is some bug in the program.
The computation tree for this wrong computation can be seen in Figure 2, as
displayed by DDT . The root of the tree corresponds to the initial symptom and
the children of each node correspond to the function calls needed for computing
the basic fact at the node. For instance the root has two children:

(1) goldenApprox → [1, 2, 1.5, 1.33, 1.25|]
(2) take 5 [1, 2, 1.5, 1.33, 1.25|] → [1, 2, 1.5, 1.33, 1.25]

corresponding to the two function calls in the condition of main instantiated
with the values used during the computation. The character in the display
represents the symbol ⊥, and stands in place of some value whose evaluation was
not needed during the computation. The basic fact (2) is valid in the intended
model, but the basic fact (1) is not, since the fourth and fifth members of the list
at the right-hand side of the basic fact should be fib(5)

fib(4) = 1.66 and fib(6)
fib(5) = 1.6

respectively.
In the debugging session of the figure we have provided information about the
validity of all the nodes, although usually this is not necessary as we will see
in sections 3 and 4. At the bottom of the display DDT shows data about the
amount of different kinds of nodes, including unknown nodes, corresponding
to basic facts whose validity has not yet determined, and trusted nodes, which
correspond to basic facts associated to trusted functions. In this example the
user has decided that functions take and tail are trusted and hence all the basic
facts corresponding to calls of these functions will be considered valid by the
debugger. The computation tree has two buggy nodes (one appears selected in
the figure), both of them corresponding to the application of the single function
rule for fibAux, which is therefore a wrong rule and will be pointed out by the

Fig. 2. Computation Tree for the program of Figure 1

Fig. 3. Some menu options in DDT

debugger as the cause of the bug. The bug in this rule is in the first argument
of the recursive call, that should be M instead of N . The correct rule is then:
fibAux N M = [N+M | fibAux M (N+M)].

2.3 Computation Trees

Next we present some definitions and auxiliary notation about computation trees
(shortly CT’s). Notice that although some basic facts can occur repeatedly in
a CT, any node can be identified by its path to the root. Given a CT T and a
node N ∈ T , we will use the notation root(T) to represent the root of the tree,
subtree(T,N) for the subtree of T whose root is N , and children(T,N) to repre-
sent a list with the children nodes of N in T . If N is valid w.r.t. the intended in-
terpretation I we will write valid(N), assuming that I is clear from the context.
Analogously nonvalid(N) will represent a non-valid node, while buggy(T,N)
will mean that nonvalid(N) and valid(N ′) for all N ′ ∈ children(T, N). Finally,
buggy(T) will indicate that there exists a node N ∈ T such that buggy(T, N).
The number of nodes in a computation tree T will be represented as |T |. Let
N be a node in T such that N 6= root(T), and let P be the parent of N
in T . Then the notation T − N represents the new tree obtained by remov-
ing N from T and letting the children of N become children of P . Hence, if
N1, . . . , Ni−1, N, Ni+1, . . . Nm are the children of P in T and N ′

1, . . . , N
′
m are

the children of N in T , the children of P in T − N will be N1, . . . , Ni−1, N
′
1,

. . . , N ′
m, Ni+1 . . . Nm. With these definitions two interesting properties of com-

putation trees can be proved. Given a computation tree T :

P1 If N ∈ T and nonvalid(N), then there is some node N ′ ∈ subtree(T, N) such
that buggy(T, N ′) and the path from N to N ′ only has non-valid nodes.

P2 if N ∈ T and valid(N), then buggy(T) iff buggy(T −N), and for every
N ′ ∈ T −N such that buggy(T −N,N ′), buggy(T,N ′) holds.

At several places in the rest of the paper we will use these properties for
justifying the correctness of various DDT features.

3 Free Navigation

The T OY system includes currently two declarative debugging navigators: a
textual top-down navigator similar to those of Buddha [17] and Freja [14], and
the graphical navigator DDT . This section shows by means of an example how
the flexibility allowed by DDT can reduce the number and complexity of the
nodes that the user must examine in comparison to the top-down navigators.
Let us consider again the program of Figure 1, but replacing the rule of the
function main by main R = true <== take 15 goldenApprox == R . The answer
computed by the system is again wrong and therefore the declarative debugger
can be employed. By using the top-down navigator of T OY we can obtain the
following debugging session, where we have replaced part of the lists by dots for
the sake of saving space in this presentation.

Consider the following facts:
1: goldenApprox → [1, 2, 1.5, 1.33, 1.25, 1.2, ... |]
2: take 15 [1, 2, 1.5, 1.33, 1.25, 1.2, ... |] → [1, 2, 1.5, 1.33, 1.25, 1.2, ...]
Are all of them valid? ([y]es / [n]ot) / [a]bort) n
Enter the number of a non-valid fact followed by a fullstop: 1.

Consider the following facts:
1: fib → [1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 |]
2: tail [1, 1, 2, 3, 4, 5, ... |] → [1, 2, 3, 4, 5, ... |]
3: fib → [1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 |]
4: [1, 2, 3, 4, ... |] ./. [1, 1, 2, 3, ... |] → [1, 2, 1.5, 1.33, 1.25, ... |]
Are all of them valid? ([y]es / [n]ot) / [a]bort) n
Enter the number of a non-valid fact followed by a fullstop: 1.

Consider the following facts:
1: fibAux 1 1 → [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 |]
Are all of them valid? ([y]es / [n]ot) / [a]bort) n

Consider the following facts:
1: fibAux 1 2 → [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 |]
..... (12 similar questions more involving fibAux)
Rule number 1 of the function fibAux is wrong.

We have omitted 12 additional questions about the validity of basic facts involv-
ing fibAux. Even assuming that the user knows the answer to these questions,
the process can be a bit boring. With greater values in the argument of take the
use of the top-down textual navigator will become unrealistic. It could be argued
that the user should stop after a few questions about fibAux and try some easier
goal, but in general is not always feasible to replace the goal which has produced
an error symptom by a simpler one.
Let us examine now a possible debugging session for the same program using
DDT . The display is not completely shown in some of the images due to the
lack of space. In the initial state of the debugger only the first level of the tree,
with the two children of the root, is expanded:

The user observes that the node corresponding to goldenApprox is not valid,
changes its state to nonvalid and expands the node to examine its children.
The state of a node can be changed in DDT either by using the option menu
”Nodes” (see Figure 3), or by right-clicking over the node and selecting the state
from the menu that appears, as shows the next image:

The next image shows the debugging session after descending in this way four
levels in the tree:

At this point the user, maybe getting bored, can check that the next nodes in the
same path correspond to the function fibAux, and seem to be non-valid. Then
the option ”Deepest Descendant with the Same Rule” of the menu ”Select” can
be used. This option looks automatically for the deepest use of fibAux in the
subtree whose root is selected. In this example, the system finds out and selects
the node containing the basic fact fibAux 1 14 → [15 |]:

The user can check readily that this node is valid and change its state conse-
quently. Moving now bottom-up, the user detects that the parent of the selected
node contains the non-valid basic fact fibAux 1 13 → [14,15 |] (the second el-
ement of the list should be 14 + 13 = 27 instead of 15) and changes its state

accordingly. In this moment DDT detects that this node is buggy and shows an
message reporting to the user that the only program rule for fibAux, used at the
buggy node, has been detected as incorrect.
Due to the recursive structure of function definitions, the option ”Deepest De-
scendant with the Same Rule” will often render a new current node N whose
basic fact is smaller and thus simpler to analyze. Navigation can then proceed
by moving down to N ’s children in case that N is non-valid, and moving up
to N ’s ancestors otherwise. In both cases, property P1 guarantees that a buggy
node can be eventually found, because N is known to have an invalid ancestor.
Of course the textual debugger could be enhanced with more sophisticated op-
tions, similar to those ofDDT mentioned here. However we think that the graph-
ical displaying provides a more general perspective of the CTs that allows, in
many cases, a quicker detection of the buggy nodes.

4 Strategy-guided Navigation: Top-down Versus
Divide-and-query

Although free navigation can be used to reduce the number of nodes consid-
ered during the debugging process, DDT also includes the possibility of using a
strategy-guided navigation and provides two possibilities: the top-down and the
divide-and-query strategies.
The top-down strategy behaves essentially like the textual debugger presented
in the previous section. The process starts with a computation tree whose root
is considered non-valid. Then the children of the root are examined looking for
some non-valid child. If such child is found the debugging continues examining
its corresponding subtree. Otherwise all the children are valid and the root of
the tree is pointed out as buggy, finishing the debugging.
The next display shows the starting point of the a debugging session using the
top-down strategy, where the user has marked the first node as non-valid and
the second one as trusted:

Notice that after each subsequent step the selected subtree has a smaller size
and an invalid root. Hence, as a consequence of property P1, a buggy node is
eventually reached.

G1 G2 G3 G4 G5 G6

Nodes 403 6725 963 600 257 731

Top-Down 102 (106) 83 (165) 3 (3) 102 (204) 10 (33) 39 (71)

Divide-and-Query 10 (10) 13 (13) 10 (10) 10 (10) 8 (8) 7 (7)

Fig. 4. Number of steps and nodes examined with the two strategies

The divide-and-query strategy was presented in [18] and has been included also
in the system TkCalypso [20]. As in the top-down strategy, debugging starts
with a computation tree whose root is not valid. The idea is to choose a node
N such that the number of nodes inside and outside of the subtree rooted by N
are the same. Although such node (called the center of the tree) does not exist
in most of the cases, the system looks for the node that better approximates the
condition. Then the user is queried about the validity of the basic fact labelling
this node. If the node is non-valid its subtree will be considered at the next step.
If it is valid then its subtree is deleted from the tree and debugging continues.
The process ends when the subtree considered has been reduced to a single
non-valid node.

Is easy to observe that, as in the top-down strategy, the number of nodes in the
tree T considered is reduced after each step, and that nonvalid(root(T)) holds.
To check that the strategy will find some buggy node we must examine the two
actions that it can perform depending on the validity of the selected node N .
First, if nonvalid(N), substituting the whole tree by subtree(T, N) is safe due
to property P1. If valid(N) we must ensure that the deleting of subtree(T,N)
will not delete all the buggy nodes. This holds again by Property P1, since the
tree must have a buggy node B with a path of non-valid nodes from root(T) to
B. Therefore N cannot be part of this path and B is not in subtree(T, N).

Since these strategies modify the structure of the tree, DDT includes options to
save and load computation trees (see the options of the menu ”File”). The files
are stored in XML format. These options can be also used to restore a previous
version of the debugging session if the user realizes after some steps that she or
he made a mistake when providing information about the validity of the nodes,
a situation that often arises.

Figure 4 shows a comparison of the number of steps and the number of nodes
examined (between round brackets) during some debugging sessions with the
two strategies. The first row of the table shows the total number of nodes of
the computation tree considered in each example. Goal G1 corresponds to our
example of Figure 1 taking the 100 first approximations of the golden ratio.
Goal G2 uses a buggy program for computing prime numbers presented in [6].
G3 uses a program with arithmetic in Peano’s representation. G4 corresponds to
a program for sorting numbers using a functional-logic programming technique
called ”lazy generate-and-test” in [8]. Goal G5 uses a program for the symbolic
derivation of expressions, while G6 corresponds to a program implementing a
queue.

The table shows a clear advantage of the divide-and-query strategy w.r.t. the
top-down strategy. In general, the number of steps in a debugging session with a
CT of size n is O(log n) when using the divide and query and O(n) when using
the top-down strategy. However, these are worst-case estimations. The top-down
strategy can behave more efficiently whenever there is a buggy node close to the
root as it is the case for goal G3.
The source code DDT consists of 2900 lines of Java code. We have used the Java
language for two reasons: firstly, Java provides several libraries for designing
graphical interfaces, and in particular some specific classes for representing trees
graphically, and secondly because the Prolog system in which T OY is based,
SICStus Prolog [19], includes an interface for interacting with Java.

5 Simplification of Computation Trees

Next we present two techniques incorporated in DDT that can provide auto-
matically information about the validity of some nodes in the computation tree.

5.1 Entailment

In [5, 6] we presented an entailment relation between basic facts based on the
approximation ordering v defined in Section 2.1. A basic fact f tn → t entails
another basic fact f sn → s (written as f tn → t º f sn → s) iff there is some
total substitution θ ∈ Subst such that t1θ v s1, . . . , tnθ v sn, s v tθ .

Notice that the entailment property is covariant in the arguments but con-
travariant in the result. For instance, considering the basic facts of Figure 2, it
can be easily proved that

fib → [1,1,2,3,4,5 | ⊥] º fib → [1,1,2,3,4 | ⊥]
fibAux 1 2 → [3,4,5 | ⊥] º fibAux 1 2 → [3,4 | ⊥]

with θ as the identity substitution in both cases. As shown in [6], entailment
between basic facts is a decidable relation, and intended program models are
closed under entailment, i.e. if f tn → t º f sn → s and (f tn → t) ∈ I then
(f sn → s) ∈ I. This means that if f tn → t is valid then f sn → s will be also
valid, and conversely that if f sn → s is not valid then f tn → t is not valid.
DDT uses this property for changing automatically the state of some nodes
when the user provides information about others. For instance when the node
containing fib → [1,1,2,3,4,5 | ⊥] is marked as valid, the state of the node
containing fib → [1,1,2,3,4 | ⊥] will be changed accordingly to valid, while
marking the node corresponding to fibAux 1 2 → [3,4 | ⊥] as nonvalid will
automatically change to nonvalid of the state of the node containing fibAux 1 2
→ [3,4,5 | ⊥].
Every basic fact obviously entails itself. Therefore, any user-given change in the
state of a node propagates automatically to all the other nodes containing the
same basic fact.

5.2 Trusted Specifications

As explained in previous sections, DDT users can mark some CT nodes as
trusted during a debugging session. All the nodes whose basic facts correspond
to the function used at the trusted node are automatically considered as valid.
A more automatic way of declaring trusted functions is by means of trusted
specifications. This idea is not new and was introduced in the seminal work of
E.Y. Shapiro [18].
We say that a T OY program S is a trusted specification if the user assumes as
valid all the basic facts that can be derived from S. Let P be a buggy program,
T a CT corresponding to some initial symptom for P , and SP some trusted spec-
ification for some of the functions occurring in P . Then the following procedure
can be used to provide some information about the validity of the nodes in T :

For each basic fact ϕ : f tn → t labelling some node N of T :
If valid?(Sp, ϕ) = yes then delete N .
If valid?(Sp, ϕ) = no then mark N as non-valid.
If valid?(Sp, ϕ) = don’t-know then mark N as unknown.

DDT incorporates an algorithm for computing valid?(Sp, ϕ) in a correct way. If
the result is yes then ϕ can be derived from Sp and deleting N is safe because of
Property P2. If the result is no then ϕ cannot be derived from Sp and marking
N as non-valid is correct. Otherwise N is marked as unknown. There are two
possible situations where the algorithm returns don’t-know:

- If the function used in ϕ is not defined in Sp.
- If the time required for deciding if ϕ can be derived from Sp exceeds a

certain time-out constant. This is done to avoid possible problems of non-
termination, since the set of basic facts derivable from a given program is
undecidable in general.

In each debugging session DDT asks the user whether this simplification should
be performed. If the answer is affirmative the tool asks for the name of the
T OY program which contains the trusted specification, and simplifies the tree
before the navigation phase.
For instance, the program of Figure 5 is a trusted specification for the example
program of the golden ratio, using a different method for generating the infinite
list with the Fibonacci sequence. For saving space we don’t include the definitions
of take, tail, goldenApprox, ./. and main which are the same of the Figure 1.
We can imagine this program as the first, naive, solution for the problem of the
golden ratio approximations programmed by the user. It works correctly, but
the generation of Fibonacci numbers is quite inefficient. Then the example of
Figure 1 could be an attempt of improving the efficiency of this program. After
trying the new version the user could observe that it returns a different answer,
and decide that the first naive version was more likely to be correct. Then the
declarative debugger could be started using this first version of Figure 5 as a
trusted specification. The simplification will delete 12 nodes of the computation

fibN 1 = 1
fibN 2 = 1
fibN N = if N>2 then (fibN (N-1))+(fibN (N-2))

fib = map fibN (from 0)

map F [] = []
map F [X|Xs] = [F X | map F Xs]

from N = [N | from N+1]

Fig. 5. A Trusted Specification for the program of Figure 1

tree and mark 3 nodes more as non valid, hence reducing the number of unknown
nodes in the initial CT from 23 to only 8.

6 Conclusions

In this paper we have described the declarative debugging tool DDT , which is
part of the functional-logic system T OY . In comparison to the traditional top-
down declarative debuggers, DDT gives more support for avoiding the complex-
ity of oracle questions. This can be achieved either by skillful free CT navigation,
or by using a divide-and-query navigation strategy. Additionally, DDT also of-
fers two useful techniques for simplifying the CT prior to navigation.

In contrast to other debugging tools (as e.g. the recent visual debugger for Mer-
cury [3]) DDT is an off-line tool: the computation tree must be completely
generated before it can be displayed and navigated. Unfortunately, complete
CT generation causes a considerable overhead w.r.t. to the original computation
which led to the debugging session, both in terms of time and space resources.
Related works on the implementation of declarative debuggers for lazy functional
languages [14, 17] have proposed techniques for reducing the computational over-
head caused by debugging. As far as we know, this kind of techniques have been
worked out only for the top-down navigation strategy. They mainly rely on a
lazy generation of the CT as demanded by navigation.

In spite of the computational overhead, we still believe that DDT offers better
facilities for CT simplification and navigation, which means a crucial advantage
in CTs with a large number of nodes, where top-down navigation produces too
many (maybe complex) questions. As future work, we plan to revise the im-
plementation of the DDT tool, looking for incremental CT simplification and
navigation methods that can be made compatible with lazy CT generation.

Acknowledgements The authors are grateful to Wolfgang Lux and Francisco
J. López-Fraguas for their useful comments about the paper, as well as to the
anonymous referees for their constructive remarks.

References

1. M. Alpuente, F.J. Correa, and M. Falaschi. A Debugging Scheme for Funcional
Logic Programs. Electronic Notes in Theoretical Computer Science. Vol. 64. Else-
vier, 2002.

2. M. Comini, G. Levi, M.C. Meo y G. Vitello. Abstract Diagnosis. J. of Logic Pro-
gramming 39, 43–93, 1999.

3. M. Cameron, M. Garćıa de la Banda, K. Marriott, and P. Moulder. ViMer: A
Visual Debugger for Mercury. In Proc. PPDP03, ACM Press, 56–66, 2003.

4. R. Caballero and W. Lux. Declarative Debugging of Encapsulated Search. Elec-
tronic Notes in Theoretical Computer Science. Vol. 76. Elsevier, 2002.

5. R. Caballero, F.J. López-Fraguas, and M. Rodŕıguez-Artalejo. Theoretical Foun-
dations for the Declarative Debugging of Lazy Functional Logic Programs. In Proc.
FLOPS’01, Springer LNCS 2024:170–184, 2001.

6. R. Caballero and M. Rodŕıguez Artalejo. A Declarative Debugging System for Lazy
Functional Logic Programs. Electronic Notes in Theoretical Computer Science. Vol.
64. Elsevier, 2002.

7. G. Ferrand. Error Diagnosis in Logic Programming, an Adaptation of E.Y.
Shapiro’s Method. The Journal of Logic Programming 4(3):177–198, 1987.

8. J.C. González-Moreno, M.T. Hortalá-González, F.J. López-Fraguas, and M.
Rodŕıguez-Artalejo. An Approach to Declarative Programming Based on a Rewrit-
ing Logic, Journal of Logic Programming 40(1) 44-87, 1999.

9. J.C. González-Moreno, M.T. Hortalá-González y M. Rodŕıguez-Artalejo. Polymor-
phic Types in Functional Logic Programming. FLOPS’99 special issue of the Jour-
nal of Functional and Logic Programming, 2001. Available at:
http://danae.uni-muenster.de/lehre/kuchen/JFLP

10. M.Hanus. Curry: An Integrated Functional Logic Language. Version 0.7.1, June
2000. Available at http://www.informatik.uni-kiel.de/curry/report.html.

11. J.W. Lloyd. Declarative Error Diagnosis. New Generation Computing 5(2):133–
154, 1987.

12. F.J. López-Fraguas, and J. Sánchez-Hernández. T OY a Multiparadigm Declarative
System, In Proc. RTA’99, LNCS 1631, Springer Verlag, 244-247, 1999.

13. L. Naish. A Declarative Debugging Scheme. Journal of Functional and Logic Pro-
gramming, 1997-3.

14. H. Nilsson. How to look busy while being lazy as ever: The implementation of a
lazy functional debugger. Journal of Functional Programming 11(6):629–671, 2001.

15. H. Nilsson and J. Sparud. The Evaluation Dependence Tree as a basis for Lazy
Functional Debugging. Automated Software Engineering, 4(2):121–150, 1997.

16. S.L. Peyton Jones (ed.), J. Hughes (ed.), et al. Report on the programming
language Haskell 98: a non-strict, purely functional language. Available at
http://www.haskell.org/onlinereport/, 2002.

17. B. Pope and L. Naish, Practical Aspects of Declarative Debugging in Haskell 98,
In Proc. PPDP03, ACM Press, 230–240, 2003.

18. E.Y.Shapiro. Algorithmic Program Debugging. The MIT Press, Cambridge, 1982.
19. SICStus Prolog homepage: http://www.sics.se/sicstus/.
20. A. Tessier and G. Ferrand. Declarative Diagnosis in the CLP Scheme. In P. De-

ransart, M. Hermenegildo and J. MaÃluszynski (Eds.), Analysis and Visualization
Tools for Constraint Programming, Chapter 5, 151–174. Springer LNCS 1870, 2000.

