
Declarative Diagnosis of Missing Answers in
Constraint Functional-Logic Programming

Rafael Caballero, Mario Rodŕıguez Artalejo,
and Rafael del Vado Vı́rseda�

Dpto. de Sistemas Informáticos y Computación
Universidad Complutense de Madrid
{rafa,mario,rdelvado}@sip.ucm.es

Abstract. We present a declarative method for diagnosing missing com-
puted answers in CFLP (D), a generic scheme for lazy Constraint Func-
tional-Logic Programming which can be instantiated by any constraint
domain D given as parameter. As far as we know, declarative diagno-
sis of missing answers in such an expressive framework has not been
tackled before. Our approach combines and extends previous work done
separately for constraint logic programming and lazy functional program-
ming languages. Diagnosis can be started whenever a user finds that the
set of computed answers for a given goal with finite search space misses
some expected solution w.r.t. an intended interpretation of the program,
that provides a declarative description of its expected behavior. Diagno-
sis proceeds by exploring a proof tree, that provides a declarative view
of the answer-collection process performed by the computation, and it
ends up with the detection of some function definition in the program
that is incomplete w.r.t. the intended interpretation. We can prove the
logical correctness of the diagnosis method under the assumption that
the recollection of computed answers performed by the goal solving sys-
tem can be represented as a proof tree. We argue the plausibility of this
assumption, and we describe the prototype of a tool which implements
the diagnosis method.

1 Introduction

Debuggers are a practical need for helping programmers to understand why their
programs do not work as intended. Declarative programming paradigms invol-
ving complex operational details, such as constraint solving and lazy evaluation,
do not fit well to traditional debugging techniques relying on the inspection of
low-level computation traces. For this reason, the design of usable debugging
tools becomes a difficult task. As a solution to this problem, and following a
seminal idea by Shapiro [28], declarative diagnosis (a.k.a. declarative debugging
or algorithmic debugging) proposes to use Computation Trees (shortly, CT s) in

� The authors have been partially supported by the Spanish National Projects MERIT-
FORMS (TIN2005-09027-C03-03) and PROMESAS-CAM (S-0505/TIC/0407).

J. Garrigue and M. Hermenegildo (Eds.): FLOPS 2008, LNCS 4989, pp. 305–321, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

306 R. Caballero, M. Rodŕıguez Artalejo, and R. del Vado Vı́rseda

place of traces. CT s are built a posteriori to represent the structure of a com-
putation whose top-level outcome is regarded as a symptom of the unexpected
behavior by the user, with results attached to their nodes representing the com-
putation of some observable result, and such that the result at any internal node
follows from the results at the children nodes, using a program fragment also
attached to the node. Declarative diagnosis explores a CT looking for a so-called
buggy node which computes an unexpected result from children whose results are
all expected. Each buggy node points to a program fragment responsible for the
unexpected behavior. The search for a buggy node can be implemented with the
help of an external oracle (usually the user with some semiautomatic support)
who has a reliable declarative knowledge of the expected program semantics, the
so-called intended interpretation.

The generic description of declarative diagnosis in the previous paragraph
follows [22]. Declarative diagnosis was first proposed in the field of Logic Pro-
gramming (LP) [28,14,18], and it has been successfully extended to other decla-
rative programming paradigms, including (lazy) Functional Programming (FP)
[25,24,27,26], Constraint Logic Programming (CLP) [1,30,15] and Functional
Logic Programming (FLP) [23,6,7]. The nature of unexpected results differs
according to the programming paradigm. Unexpected results in FP are mainly
incorrect values, while in CLP and FLP an unexpected result can be either a sin-
gle computed answer regarded as incorrect, or a set of computed answers (for one
and the same goal with a finite search space) regarded as incomplete. These two
possibilities give rise to the declarative diagnosis of wrong and missing computed
answers, respectively. The case of unexpected finite failure of a goal is a particular
symptom of missing answers with special relevance. However, diagnosis methods
must consider the more general case, since finite failure of a goal is often caused
by non-failing subgoals that do not compute all the expected answers.

In contrast to alternative approaches to error diagnosis based on abstract in-
terpretation techniques [17], declarative diagnosis often involves complex queries
to the user. This problem has been tackled by means of various techniques, such
as user-given partial specifications of the program’s semantics [1,7], safe inferen-
ce of information from answers previously given by the user [6], or CT s tailored
to the needs of a particular debugging problem over a particular computation
domain [15]. Another practical problem with declarative diagnosis is that the
size of CT s can cause excessive overhead in the case of computations that de-
mand a big amount of computer storage. As a remedy, techniques for piecemeal
construction of CT s have been considered; see [26] for a recent proposal in the
FP field.

In spite of the above mentioned difficulties, we are confident that declara-
tive diagnosis methods can be useful for detecting programming bugs by obser-
ving computations whose demand of computer storage is modest. In this paper,
we present a declarative method for diagnosing missing computed answers in
CFLP (D) [20], a generic scheme for lazy Constraint Functional-Logic Program-
ming which can be instantiated by any constraint domain D given as parameter,
and supports a powerful combination of functional and constraint logic program-
ming over D. Sound and complete goal solving procedures for the CFLP (D)

Declarative Diagnosis of Missing Answers in CFLP 307

scheme have been obtained [19,11,12]. Moreover, useful instances of this scheme
have been implemented in the T OY system [21] and tested in practical applica-
tions [13].

The rest of the paper is organized as follows: Section 2 motivates our approach
and presents a debugging example, intended to illustrate the main features of
our diagnosis method. Section 3 presents the abbreviated proof trees used as
CT s in our method, as well as the results ensuring the logical correctness of
the diagnosis. Section 4 presents a prototype debugger under development, and
Section 5 concludes and gives an overview of planned future work. Full proofs of
the main results given in Section 3 are available in [10].

2 Motivation

While methods and tools for the declarative diagnosis of wrong answers are
known for FLP [23,6,7] and CFLP [4,8] languages, we are not aware of any
research concerning the declarative diagnosis of missing answers in CFLP lan-
guages, except our poster presentation [9]. However, missing answers are a com-
mon problem which can arise even in the absence of wrong answers.

We are interested in the declarative diagnosis of missing answers in CFLP (D)
[20], a very expressive generic scheme for Functional and Constraint Logic Pro-
gramming over a constraint domain D given as parameter. Each constraint do-
main provides basic values and primitive operations for building domain specific
constraints to be used in programs and goals. Useful constraint domains include
the Herbrand domain H for equality (==) and disequality (/=) constraints over
constructed data values; the domain R for arithmetic constraints over real num-
bers; and the domain FD for finite domain constraints over integer values.

The CFLP (D) scheme supports programming with lazy functions that may
be non-deterministic and/or higher-order. Programs P include program rules of
the form f t1 . . . tn → r ⇐ Δ, abbreviated as f tn → r ⇐ Δ, with Δ omitted
if empty. Such a rule specifies that f when acting over parameters matching
the patterns tn at the left hand side, will return the values resulting from the
right hand side expression r, provided that the constraints in Δ can be satisfied.
Goals G for a given program have the general form ∃U. (R � S), where ∃U is an
existentially quantified prefix of local variables, R = (P � Δ) is the yet unsolved
part, including productions e → s in P and constraints in Δ, and S = (Π � σ)
is the constraint store, consisting of primitive constraints Π and an idempotent
substitution σ. Productions e → s are solved by lazy narrowing, a combination
of unification and lazy evaluation; the expression e must be narrowed to match
the pattern s. Initial goals have neither productions nor local variables, and
solved goals have the form ∃U. S. Solved goals are also called computed answers
and abbreviated as Ŝ.

In this paper we focus mainly in CFLP (D) programming as implemented in
T OY [21]. The interested reader is referred to [20,19,11] for formal details on
the declarative and operational semantics of the CFLP (D) scheme.

308 R. Caballero, M. Rodŕıguez Artalejo, and R. del Vado Vı́rseda

The following small CFLP (H)-program PfD, written in T OY syntax, in-
cludes program rules for the non-deterministic functions (//) and fDiff, and
the deterministic functions gen and even. Note the infix syntax used for (//),
as well as the use of the equality symbol = in place of the rewrite arrow --> for
the program rules of those functions viewed as deterministic by the user. This
is just meant as user given information, not checked by the T OY system, which
treats all the program defined functions as possibly non-deterministic.

infixr 40 // % non-deterministic choice operator

(//) :: A -> A -> A
X // _ --> X
_ // Y --> Y

fDiff :: [A] -> A
fDiff [X] --> X
fDiff (X:Y:Zs) --> X // fDiff (Y:Zs) <== X /= Y
fDiff (X:Y:Zs) --> X <== X == Y

gen :: A -> A -> [A] even :: int -> bool
gen X Y = X : Y : gen Y X even N = true <== (mod N 2) == 0

Function fDiff is intended to return any element belonging to the longest pre-
fix Xs of the list given as parameter such that Xs does not include two identical
elements in consecutive positions. In general, there will be several such elements,
and therefore fDiff is non-deterministic. Function gen is deterministic and re-
turns a potentially infinite list of the form [d1, d2, d2, d1, d1, d2, ...], where the
elements d1 and d2 are the given parameters. Therefore, the lazy evaluation of
(fDiff (gen 1 2)) is expected to yield the two possible results 1 and 2 in al-
ternative computations, and the initial goal GfD : even (fDiff (gen 1 2)) ==
true for PfD is expected to succeed, since (fDiff (gen 1 2)) is expected to
return the even number 2. However, if the third program rule for function fDiff
were missing in program PfD, the expression (fDiff (gen 1 2)) would return
only the numeric value 1, and therefore the goal GfD would fail unexpectedly. At
this point, a diagnosis for missing answers could take place, looking for a buggy
node in a suitable CT in order to detect some incomplete function definition
(that of function fDiff, in this case) to be blamed for the missing answers.

We propose to use CT s whose nodes have attached so-called answer collection
assertions, briefly acas. The aca at the root node has the form G0 ⇒

∨
i∈I Ŝi,

where G0 is the initial goal and
∨

i∈I Ŝi (written as the failure symbol � if I = ∅)
is the disjunction of computed answers observed by the user. This root aca as-
serts that the computed answers cover all the solutions of the initial goal, and
will be regarded as a false statement in case that the user misses computed
answers. For example, the root aca corresponding to the initial goal GfD for
program PfD is even (fDiff (gen 1 2)) == true ⇒ � stating that this goal
has (unexpectedly) failed. The acas at internal nodes in our CT s have the form
ftn → t � S ⇒

∨
i∈I Ŝi, asserting that the disjunction of computed answers

Declarative Diagnosis of Missing Answers in CFLP 309

∨
i∈I Ŝi covers all the solutions for the intermediate goal G′ : ftn → t � S.

Note that G′ asks for the solutions of the production ftn → t which satisfy the
constraint store S. The acas of this form correspond to the intermediate calls to
program defined functions f needed for collecting all the answers computed for
the initial goal G0. Due to lazy evaluation, the parameters tn and the result t
will appear in the most evaluated form demanded by the topmost computation.
When these values are functions, they are represented in terms of partial appli-
cations of top-level function names. This is satisfactory under the assumption
that no local function definitions are allowed in programs, as it happens in T OY .

We build our CT s as abbreviated proof trees w.r.t. a logically sound inference
system for deriving acas. For this reason, our CT s are such that the validity
of the aca at each node follows from the validity of the acas at their children,
under the assumption that the function definition relating the parent node to
the children nodes is complete w.r.t. the intended interpretation of the program.
Any CT whose root aca is invalid must include at least one buggy node labeled
with an invalid aca and whose children are all labeled with valid acas. Each
buggy node N is related to some particular function f whose program rules are
responsible for the computation of the aca at N from the acas at N ’s children.
Therefore, the program rules for f can be diagnosed as incomplete. The search
for a buggy node can be implemented with the help of an external oracle who
has a reliable declarative knowledge of the valid acas w.r.t. the intended program
interpretation. Since the oracle is usually the programmer, she can even experi-
ment with different choices of the intended interpretation in order to obtain
different diagnosis of possibly incomplete functions.

Fig. 1. CT for the declarative diagnosis of missing answers

A CT corresponding to the goal GfD for program PfD (with the third program
rule for function fDiff omitted) is displayed in Fig. 1. More on its structure and
construction will be explained in Section 3. In this case, the programmer will
judge the root aca as invalid because she did not expect finite failure. Moreover,
from her knowledge of the intended interpretation, she will decide to consider
the acas for the functions gen, even and (//) as valid. However, the aca fDiff
(2:2:1:G) → F2 ⇒ (F2 �→ ⊥) asserts that the undefined value ⊥ is the only
possible result for the function call fDiff (2:2:1:G), while the user expects
also the result 2. Therefore, the user will judge this aca as invalid. The node
where it sits (enclosed within a double box in Fig. 1) has no children and thus

310 R. Caballero, M. Rodŕıguez Artalejo, and R. del Vado Vı́rseda

becomes buggy, leading to the diagnosis of fDiff as incomplete. This particular
incompleteness symptom could be mended by placing the third rule for fDiff
within the program.

3 Declarative Diagnosis of Missing Answers

As explained in the previous sections, the declarative diagnosis method proposed
in this paper relies on building CT s as abbreviated proof trees w.r.t. a logically
sound inference system for deriving acas. In this section, we present such an
inference system, whose negative proof trees represent the deduction of acas
from the negative theory P− associated to a given CFLP (D)-program P . We
also present results ensuring the logical correctness of the declarative diagnosis
method whose CT s are abbreviated representations of negative proof trees.

3.1 Standardized Programs and Negative Theories

Let P be a CFLP (D)-program. Its associated Negative Theory P− is obtained in
two steps. First, each program rule f tn → r ⇐ Δ is replaced by a standardized
form f Xn → Y ⇐ R̂, where Xn, Y are new variables, R̂ = ∃U. R with U =
var(R) \ {Xn, Y }, and the condition R is X1 → t1, . . . , Xn → tn, Δ, r → Y .
Next, P− is built by taking one axiom (f)−P of the form ∀Xn, Y. (f Xn → Y

⇒ (
∨

i∈I R̂i) ∨ (⊥ → Y)) for each function symbol f whose standardized pro-
gram rules are {f Xn → Y ⇐ R̂i}i∈I . By convention, we may use the notation
Df for the disjunction (

∨
i∈I R̂i) ∨ (⊥ → Y), and we may leave the universal

quantification of the variables Xn, Y implicit. Intuitively, the axiom (f)−P says
that any result computed for f must be obtained by means of some of the rules
for f in the program. The last alternative (⊥ → Y) within Df says that Y is
bound to the undefined result ⊥ in case that no program rule for f succeeds to
compute a more defined result. For example, let PfD be the CFLP (H)-program
given in Section 2, with the third program rule for fDiff omitted. Then P−

fD
includes (among others) the following axiom for the function symbol fDiff:

(fDiff)−
PfD

: ∀L, F. (fDiff L → F ⇒
∃X. (L → [X] ∧ X → F) ∨
∃X, Y, Zs. (L → (X : Y : Zs) ∧ X /= Y ∧ X // fDiff (Y : Zs) → F) ∨
(⊥ → F))

Interpretations I are formally defined in [20]. Each interpretation represents a
certain behavior of the program defined functions. We write I ��D ftn → t to
indicate that the statement ftn → t is valid in I. Here, f is a program defined
function, tn stand for possibly partially evaluated arguments, and t stands for a
possibly partially evaluated result. Knowing the valid assertions I ��D ftn → t
suffices for defining the solution set SolI(G) whose elements are all the valua-
tions (i.e., substitutions of domain values for variables) that satisfy the goal G
w.r.t. I. We will use similar notations for other solution sets in the rest of the

Declarative Diagnosis of Missing Answers in CFLP 311

paper, writing SolD instead of SolI whenever the solutions do not depend on
the interpretation I of program defined functions. The following definition helps
to understand the semantics of missing answers:

Definition 1 (Interpretation-Dependent Semantics). Let P a CFLP (D)-
program and I an interpretation over D.

1. I is a model of P− iff every axiom (f)−P : (f Xn → Y ⇒ Df) ∈ P− satis-
fies SolI(f Xn → Y) ⊆ SolI(Df). When this inclusion holds, we say that
(f)−P is valid in I, or also that f ’s definition as given in P is complete
w.r.t. I.

2. The aca G ⇒
∨

i∈I Ŝi is a logical consequence of P− iff SolI(G) ⊆
⋃

i∈I

SolD(Ŝi) for any model I of P−. When this happens, we also say that the
disjunction of answers

∨
i∈I Ŝi is complete for G w.r.t. P.

3.2 Negative Proof Trees for Answer Collection Assertions

The declarative debugging of missing answers presupposes an intended interpre-
tation of the program, starts with the observation of an incompleteness symptom
and ends with an incompleteness diagnosis. A more precise definition of this de-
bugging scenario is as follows:

Definition 2 (Debugging Scenario). For any given CFLP (D)-program P:

1. The intended interpretation is some interpretation IP over D which
represents the behavior of the functions defined in P as expected by the pro-
grammer.

2. An incompleteness symptom occurs if the goal solving system computes
finitely many solved goals {Ŝi}i∈I as answers for an admissible initial goal
G, and the programmer judges that SolIP (G) �

⋃
i∈I SolD(Ŝi), meaning

that the aca G ⇒
∨

i∈I Ŝi is not valid in the intended interpretation IP , so
that some expected answers are missing.

3. An incompleteness diagnosis is given by pointing to some defined function
symbol f such that the axiom (f)−P for f in P− is not valid in IP , which
means SolIP (f Xn → Y) �⊆ SolIP (Df), showing that f ’s definition as given
in P is incomplete w.r.t. IP .

Some concrete debugging scenarios have been discussed in Section 2 and [9].
Assume now that an incompleteness symptom has been observed by the pro-
grammer. Since the goal solving system has computed the disjunction of answers
D =

∨
i∈I Ŝi, the aca G ⇒ D asserting that the computed answers cover all

the solutions of G should be derivable from P−. The Constraint Negative Proof
Calculus CNPC(D) consisting of the inference rules displayed in Fig. 2 has been
designed with the aim of enabling logical proofs P− �CNPC(D) G ⇒ D of acas.
We use a special operator & in order to express the result of attaching to a
given goal G a solved goal Ŝ′ resulting from a previous computation, so that
computation can continue from the new goal G & Ŝ′.

312 R. Caballero, M. Rodŕıguez Artalejo, and R. del Vado Vı́rseda

SF Solved Form
R � S ⇒ D

if SolD(S) ⊆ SolD(D).

CJ Conjunction

R1 � S ⇒
∨

i∈I ∃Zi. Si . . . (R̂2 & Ŝi) ⇒
∨

j∈Ji
∃Zij . Sij . . . (i ∈ I)

(R1 ∧ R2) � S ⇒
∨

i∈I

∨
j∈Ji

∃Zi, Zij . Sij

if Zi /∈ var((R1 ∧ R2) � S), Zij /∈ var((R1 ∧ R2) � S) ∪ Zi, for all i ∈ I, j ∈ Ji.

TS Trivial Statement
ϕ : G ⇒ D

if ϕ is a trivial aca s.t. Sol(G) ⊆ SolD(D).

DC DeComposition em → tm � S ⇒ D

hem → htm � S ⇒ D
if hem is not a pattern.

IM IMitation em → Xm � (S ∧ hXm → X) ⇒
∨

i∈I ∃Zi. Si

hem → X � S ⇒
∨

i∈I ∃Xm, Zi. Si

if hem is not a pattern, X ∈ V, and Xm /∈ var(hem → X � S).

(AR)p Argument Reduction for Primitive Functions

en → Xn � (S ∧ pXn →! t) ⇒
∨

i∈I ∃Zi. Si

pen →? t � S ⇒ (S ∧ ⊥ → t) ∨ (
∨

i∈I ∃Xn, ∃Zi. Si)

if p ∈ PF n, Xn /∈ var(pen →? t � S), and →? ≡ → (production) ∪ →! (constraint).
For instance, equality constraints e1 == e2 (resp., disequality constraints e1 /= e2).
are abbreviations of e1 == e2 →! true (resp., e1 == e2 →! false).

(AR)f Argument Reduction for Defined Functions

(en → Xn ∧ fXn → t) � S ⇒
∨

i∈I ∃Zi. Si

fen → t � S ⇒
∨

i∈I ∃Xn, Zi. Si

if f ∈ DF n, and Xn /∈ var(fen → t � S).

(en → Xn ∧ fXn → Y ∧ Y ak → t) � S ⇒
∨

i∈I ∃Zi. Si

fenak → t � S ⇒
∨

i∈I ∃Xn, Y, Zi. Si

if f ∈ DF n (k > 0), and Xn, Y /∈ var(fenak → t � S).

(DF)f Defined Function . . . Ri[Xn
→ tn, Y
→ t] � S ⇒ Di . . . (i ∈ I)

ftn → t � S ⇒ (S ∧ ⊥ → t) ∨ (
∨

i∈I Di)

if f ∈ DF n, Xn, Y /∈ var(ftn → t � S), and (fXn → Y ⇒
∨

i∈I R̂i) ∈ P−.

Fig. 2. The Constraint Negative Proof Calculus CNPC(D)

Declarative Diagnosis of Missing Answers in CFLP 313

Formally, assuming G = ∃U. (R � (Π � σ)) and Ŝ′ = ∃U
′
. (Π ′ � σ′) a

solved goal such that U \ dom(σ′) ⊆ U
′
, σσ′ = σ′ and SolD(Π ′) ⊆ SolD(Πσ′),

the operation G & Ŝ′ is defined as ∃U
′
. (Rσ′ � (Π ′ � σ′)). The inference rule

CJ infers an aca for a goal with composed kernel (R1 ∧ R2) � S from acas for
goals with kernels of the form R1 � S and (R̂2 & Ŝi), respectively; while other
inferences deal with different kinds of atomic goal kernels.

Any CNPC(D)-derivation P− �CNPC(D) G ⇒ D can be depicted in the form
of a Negative Proof Tree over D (shortly, NPT) with acas at its nodes, such that
the aca at any node is inferred from the acas at its children using some CNPC(D)
inference rule. We say that a goal solving system for CFLP (D) is admissible iff
whenever finitely many solved goals {Ŝi}i∈I are computed as answers for an
admissible initial goal G, one has P− �CNPC(D) G ⇒

∨
i∈I Ŝi with some

witnessing NPT . The next theorem is intended to provide some plausibility to
the pragmatic assumption that actual CFLP systems such as Curry [16] or
T OY [21] are admissible goal solving systems.

Theorem 1 (Existence of Admissible Goal Solving Calculi). There is
an admissible Goal Solving Calculus GSC(D) which formalizes the goal solving
methods underlying actual CFLP systems such as Curry or T OY.

Proof. A more general result can be proved, namely: If (R̂ ∧ R′) & Ŝ ‖∼p
P,GSC(D)

D (with a partially developed search space of finite size p built using the program
P , a Goal Solving Calculus GSC(D) inspired in [19,11], and a certain selection
strategy that only selects atoms descendants of the part R) then P− �CNPC(D)

R̂ & Ŝ ⇒ D with some witnessing NPT . The proof proceeds by induction of
p, using an auxiliary lemma to deal with compound goals whose kernel is a
conjunction. Details are given in [10]. ��

We have also proved in [10] the following theorem, showing that any aca which
has been derived by means of a NPT is a logical consequence of the negative
theory associated to the corresponding program. This result will be used below
for proving the correctness of our diagnosis method.

Theorem 2 (Semantic Correctness of the CNPC(D) Calculus). Let G
⇒ D be any aca for a given CFLP (D)-program P. If P− �CNPC(D) G ⇒ D
then G ⇒ D is a logical consequence of P− in the sense of Definition 1.

3.3 Declarative Diagnosis of Missing Answers Using Negative Proof
Trees

We are now prepared to present a declarative diagnosis method for missing ans-
wers which is based on NPT s and leads to correct diagnosis for any admissible
goal solving system. First, we show that incompleteness symptoms are caused
by incomplete program rules. This is guaranteed by the following theorem:

314 R. Caballero, M. Rodŕıguez Artalejo, and R. del Vado Vı́rseda

Theorem 3 (Missing Answers are Caused by Incomplete Program
Rules). Assume that an incompleteness symptom has been observed for a given
CFLP (D)-program P as explained in Definition 2, with intended interpretation
IP , admissible initial goal G, and finite disjunction of computed answers D =∨

i∈I Ŝi. Assume also that the computation has been performed by an admissible
goal solving system. Then there exists some defined function symbol f such that
the axiom (f)−P for f in P− is not valid in IP , so that f ’s definition as given in
P is incomplete w.r.t. IP .

Proof. Because of the admissibility of the goal solving system, we can assume
P− �CNPC(D) G ⇒ D. Then the aca G ⇒ D is a logical consequence of P−

because of Theorem 2. By Definition 1, we conclude that SolI(G) ⊆ SolD(D)
holds for any model I of P−. However, we also know that SolIP (G) � SolD(D),
because the disjunction D of computed answers is an incompleteness symptom
w.r.t. IP . Therefore, we can conclude that IP is not a model of P−, and therefore
the completeness axiom (f)−P of some defined function symbol f must be invalid
in IP . ��

The previous theorem does not yet provide a practical method for finding an
incomplete function definition. As explained in Section 2, a declarative diagnosis
method is expected to find the incomplete function definition by inspecting a
CT . We propose to use abbreviated NPT s as CT s. Note that (DF)f is the
only inference rule in the CNPC(D) calculus that depends on the program,
and all the other inference rules are correct w.r.t. arbitrary interpretations. For
this reason, abbreviated proof trees will omit the inference steps related to the
CNPC(D) inference rules other than (DF)f . More precisely, given a NPT T
witnessing a CNPC(D) proof P− �CNPC(D) G ⇒ D, its associated Abbreviated
Negative Proof Tree (shortly, ANPT) AT is constructed as follows:

(1) The root of AT is the root of T .
(2) The children of any node N in AT are the closest descendants of N in T

corresponding to boxed acas introduced by (DF)f inference steps.

As already explained, declarative diagnosis methods search a given CT look-
ing for a buggy node whose result is unexpected but whose children’s results are
all expected. In our present setting, the CT s are ANPT s, the “results” attached
to nodes are acas, and a given node N is buggy iff the aca at N is invalid (i.e., it
represents an incomplete recollection of computed answers in the intended inter-
pretation IP) while the aca at each children node Ni is valid (i.e., it represents
a complete recollection of computed answers in the intended interpretation IP).

As a concrete example, Fig. 3 displays a NPT which can be used for the
diagnosis of missing answers in the example presented in Section 2. Buggy nodes
are highlighted by encircling the acas attached to them within double boxes.
The CT shown in Fig. 1 is the ANPT constructed from this NPT .

Our last result is a refinement of Theorem 3. It guarantees that declarative
diagnosis with ANPT s used as CT s leads to the correct detection of incomplete
program functions. A proof can be found in [10].

Declarative Diagnosis of Missing Answers in CFLP 315

Fig. 3. NPT for the declarative diagnosis of missing answers

Theorem 4 (ANPT s Lead to the Diagnosis of Incomplete Functions).
As in Theorem 3, assume that an incompleteness symptom has been observed for
a given CFLP (D)-program P as explained in Definition 2, with intended inter-
pretation IP , admissible initial goal G, and finite disjunction of answers D =∨

i∈I Ŝi, computed by an admissible goal solving system. Then P− �CNPC(D)
G ⇒ D, and the ANPT constructed from any NPT witnessing this derivation,
has some buggy node. Moreover, each such buggy node points to an axiom (f)−P
which is incomplete w.r.t. the user’s intended interpretation IP .

4 Implementation in the TOY System

In this section, we discuss the implementation in the T OY system of a tool
based on the debugging method presented in the previous sections. The current
prototype only supports the Herbrand constraint domain H, although the same
principles can be applied to other constraint domains D.

We summarize first the normal process followed by the T OY system when
compiling a source program P .toy and solving an initial goal G w.r.t. P . During

316 R. Caballero, M. Rodŕıguez Artalejo, and R. del Vado Vı́rseda

the compilation process the system translates a source program P .toy into a
Prolog program P .pl including a predicate for each function in P . For instance
the function even of our running example is transformed into a predicate

even(N,R,IC,OC):- ... code for even

where the variable N corresponds to the input parameter of the function, R to
the function result, and IC, OC represent, respectively, the input and output
constraint store. Moreover, each goal G of P is also translated into a Prolog goal
and solved w.r.t. P .pl by the underlying Prolog system. The result is a collection
of answers which are presented to the user in a certain sequence, as a result of
Prolog’s backtracking.

If the computation of answers for G finishes after having collected finitely
many answers, the user may decide that there are some missing answers (incom-
pleteness symptom, in the terminology of Definition 2) and type the command
/missing at the system prompt in order to initiate a debugging session. The
debugger proceeds carrying out the following steps:

1. The object program P .pl is transformed into a new Prolog program PT. pl.
The debugger can safely assume that P .pl already exists because the tool is
always initiated after some missing answer has been detected by the user.
The transformed program PT behaves almost identically to P , the only
difference being that it produces a suitable trace of the computation in a
text file. For instance here is a fragment of the code for the function even
of our running example in the transformed program:

1 % this clause wraps the original predicate
2 even(N,R,IC,OC):-
3 % display the input values for even
4 write(’ begin(’), write(’ even,’), writeq(N), write(’,’),
5 write(R), write(’, ’), writeq(IC), write(’).’), nl,
6 % evenBis corresponds to the original predicate for even
7 evenBis(N,R,IC,OC),
8 % display an output result
9 write(’ output(’), write(’ even,’), writeq(N), write(’,’),
10 write(R), write(’, ’), writeq(OC), write(’).’), nl.

11 % when all the possible outputs of the function have been produced
12 even(N,R,IC,OC):-
13 nl, write(’ end(even).’), nl,
14 !,
15 fail.
16 evenBis(N,R,IC,OC) :- ... original code for even

As the example shows, the code for each function now displays information
about the values of the arguments and the contents of the constraint store at
the moment of using any user defined function (lines 4-5). Then the predicate
corresponding to the original function, now renamed with the Bis suffix, is
called (line 7). After any successful function call the trace displays again

Declarative Diagnosis of Missing Answers in CFLP 317

the values of the arguments and result, which may have changed, and the
contents of the output constraint store (lines 9, 10). A second clause (lines
12-15) displays the value end when the function has exhausted its possible
output. The clause fails in order to ensure that the program flow is not
changed. The original code for each function is kept unaltered in the trans-
formed program except for the renaming (evenBis instead of even in the
example, line 16). This ensures that the program will behave equivalently to
the original program, except for the trace produced as a side-effect.

2. In order to obtain the trace file, the debugger repeats the computation of
all the answers for the goal G w.r.t. PT . After each successful computation
the debugger enforces a fail in order to trigger the backtracking mechanism
and produce the next solution for the goal. The program output is redirected
to a file, where the trace is stored.

3. The trace file is then analyzed by the CT builder module of the tool. The
result is the Computation Tree (an ANPT), which is displayed by a Java
graphical interface.

4. The tree can be navigated by the user either manually, providing information
about the validity of the acas contained in the tree, or using any of the
automatic strategies included in the tool which try to minimize the number of
nodes that the user must examine (see [29] for a description of some strategies
and their efficiency). The process ends when a buggy node is found and the
tool points to an incomplete function definition, as explained in Section 3,
as responsible for the missing answers. The current implementation of the
prototype is available at http://toy.sourceforge.net. The generation of
trace files works satisfactorily, while the CT builder module and the Java
graphical interface do still need more improvements.

Fig. 4 shows how the tool displays the CT corresponding to the debugging sce-
nario discussed in Section 2. The initial goal is not displayed, but the rest of the
CT corresponds to Fig. 1, whose construction as ANPT has been explained in
Section 3. When displaying an aca f tn → t � S ⇒

∨
i∈I Ŝi, the tool uses list

notation for representing the disjunction
∨

i∈I Ŝi and performs some simplifica-
tions: useless variable bindings within the stores S and Si are dropped, as in the
aca displayed as gen 2 1 -> A ==> [A = 2:1:_] in Fig. 4; and if t happens to
be a variable X , the case {X �→ ⊥} is omitted from the disjunction

∨
i∈I Ŝi, so

that the user must interpret the aca as collecting the possible results for X other
than the undefined value ⊥. The tool also displays the underscore symbol _ at
some places. Within any aca, the occurrences of _ at the right hand side of the
implication ⇒ must be understood as different existentially quantified variables,
while each occurrence of _ at the left hand side of ⇒ must be understood as ⊥.
For instance, 1 // _ -> A ==> [A = 1] is the aca 1 // ⊥ → A ⇒ {A �→ 1}
as displayed by the tool. Understanding the occurrences of _ at the left hand
side of ⇒ as different universally quantified variables would be incorrect. For
instance, the aca 1 // ⊥ → A ⇒ {A �→ 1} is valid w.r.t. the intended inter-
pretation IPfD of PfD, while the statement ∀X. (1 // X → A ⇒ {A �→ 1})
has a different meaning and is not valid in IPfD .

318 R. Caballero, M. Rodŕıguez Artalejo, and R. del Vado Vı́rseda

Fig. 4. Snapshots of the prototype

In the debugging session shown in Fig. 4 the user has selected the Divide &
Query strategy [29] in order to find a buggy node. The lower part of the left-
hand side snapshot shows the first question asked by the tool after selecting this
strategy, namely the aca fDiff 1:2:2:1: -> A ==> [A=1]. According to her
knowledge of IPfD the user marks this aca as invalid. The strategy now prunes
the CT keeping only the subtree rooted by the invalid aca at the previous step
(every CT with an invalid root must contain at least one buggy node). The se-
cond question, which can be seen at the right-hand side snapshot, asks about the
validity of the aca fDiff 2:2:1: -> A ==> [] (which in fact represents fDiff
2:2:1:⊥ → A ⇒ {A �→ ⊥}, as explained above). Again, her knowledge of IPfD
leads the user to expect that fDiff 2:2:1:⊥ can return some defined result, and
the aca is marked as invalid. After this question the debugger points out at fDiff
as an incomplete function, and the debugging session ends. Regarding the effi-
ciency of this debugging method our preliminary experimental results show that:

1. Producing the transformed PT. pl from P .pl is proportional in time to the
number of functions of the program, and does require an insignificant amount
of system memory since each predicate is transformed separately.

2. The computation of the goal w.r.t. PT. pl requires almost the same system
resources as w.r.t. P .pl because writing the trace causes no significant over-
head in our experiments.

3. Producing the CT from the trace is not straightforward and requires several
traverses of the trace. Although more time-consuming due to the algorithmic
difficulty, this process only keeps portions of the trace in memory at each
moment.

4. The most inefficient phase in our current implementation is the graphical
interface. Although it would be possible to keep in memory only the por-
tion of the tree displayed at each moment, our graphical interface loads the
whole CT in main memory. We plan to improve this limitation in the future.
However the current prototype can cope with CT s containing thousands of
nodes, which is enough for medium size computations.

5. As usual in declarative debugging, the efficiency of the tool depends on the
computation tree size, which in turn usually depends on the size of the data
structures required and not on the program size.

Declarative Diagnosis of Missing Answers in CFLP 319

A different issue is the difficulty of answering the questions by the user. Indeed in
complicated programs involving constraints the acas can be large and intricate,
as it is also the case with other debugging tools for CLP languages. Neverthe-
less, our prototype works reasonably in cases where the goal’s search space is
relatively small, and we believe that working with such goals can be useful for
detecting many programming bugs in practice. Techniques for simplifying CT s
should be worked out in future improvements of the prototype. For instance,
asking the user for a concrete missing instance of the initial goal and starting a
diagnosis session for the instantiated goal might be helpful.

5 Conclusions and Future Work

We have presented a novel method for the declarative diagnosis of missing com-
puted answers in CFLP (D), a declarative programming scheme which combines
the expressivity of lazy FP and CLP languages. The method relies on Com-
putation Trees (CT s) whose nodes are labeled with answer collection assertions
(acas). As in declarative diagnosis for FP languages, the values displayed at
acas are shown in the most evaluated form demanded by the topmost compu-
tation. On the other hand, and following the CLP tradition, we have shown
that our CT s are abbreviated proof trees in a suitable inference system, the
so-called constraint negative proof calculus. Thanks to this fact, we can prove
the correctness of our diagnosis method for any admissible goal solving system
whose recollection of computed answers can be represented by means of a proof
tree in the constraint negative proof calculus. As far as we know, no comparable
result was previously available for such an expressive framework as CFLP .

Intuitively, the notion of aca bears some loose relationship to programming
techniques related to answer recollection, as e.g., encapsulated search [2]. How-
ever, acas in our setting are not a programming technique. Rather, they serve
as logical statements whose falsity reveals incompleteness of computed answers
w.r.t. expected answers. In principle, one could also think of a kind of logical
statements somewhat similar to acas, but asserting the equality of the observed
and expected sets of computed answers for one and the same goal with a finite
search space. We have not developed this idea, which could support the declarati-
ve diagnosis of a third kind of unexpected results, namely incorrect answer sets
as done for Datalog [5]. In fact, we think that a separate diagnosis of wrong and
missing answers is pragmatically more convenient for users of CFLP languages.

On the practical side, our method can be applied to actual CFLP systems
such as Curry or T OY , leading to correct diagnosis under the pragmatic as-
sumption that they behave as admissible goal solving systems. This assumption
is plausible in so far as the systems are based on formal goal solving procedures
that can be argued to be admissible. A prototype debugger under development is
available, which implements the method in T OY . Although our implementation
is based on the ad-hoc trace generated by the transformed program PT , we think
that it could be possible to obtain the CT s from the redex trail for functional-logic

320 R. Caballero, M. Rodŕıguez Artalejo, and R. del Vado Vı́rseda

programming described in [3]. This would allow reasoning about the correct-
ness of the implementation by using the declarative semantics supporting this
structure.

Some important pragmatic problems well known for declarative diagnosis tools
in FP and CLP languages also arise in our context: both the CT s and the acas
at their nodes may be very big in general, causing computation overhead and
difficulties for the user in answering the questions posed by the debugging tool.
In spite of these difficulties, the prototype works reasonably in cases where the
goal’s search space is relatively small, and we believe that working with such goals
can be useful for detecting many programming bugs in practice. Techniques for
simplifying CT s should be worked out in future improvements of the prototype.

Acknowledgments

The authors are grateful to the referees of previous versions of this paper for
their constructive comments and suggestions.

References

1. Boye, J., Drabent, W., Maluszynski, J.: Declarative diagnosis of contraint pro-
grams: An assertion-based approach. In: Automated and Algorithmic Debugging,
pp. 123–140 (1997)

2. Brassel, B., Hanus, M., Huch, F.: Encapsulating non-determinism in functional
logic computations. Journal of Functional and Logic Programming (2004)

3. Brassel, B., Hanus, M., Huch, F., Vidal, G.: A semantics for tracing declarative
multi-paradigm programs. In: PPDP 2004, pp. 179–190. ACM Press, New York
(2004)

4. Caballero, R.: A declarative debugger of incorrect answers for constraint functional-
logic programs. In: WCFLP 2005, pp. 8–13. ACM Press, New York (2005)

5. Caballero, R., Garćıa-Ruiz, Y., Sáenz-Pérez, F.: A new proposal for debugging
datalog programs. In: WFLP 2007 (2007)

6. Caballero, R., Rodŕıguez-Artalejo, M.: A declarative debugging system for lazy
functional logic programs. Electr. Notes Theor. Comput. Sci. 64 (2002)

7. Rodŕıguez-Artalejo, M., Caballero, R.: DDT : A declarative debugging tool for
functional-logic languages. In: Kameyama, Y., Stuckey, P.J. (eds.) FLOPS 2004.
LNCS, vol. 2998, pp. 70–84. Springer, Heidelberg (2004)

8. Caballero, R., Rodŕıguez-Artalejo, M., del Vado-Vı́rseda, R.: Declarative diagno-
sis of wrong answers in constraint functional-logic programming. In: Etalle, S.,
Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 421–422. Springer, Hei-
delberg (2006)

9. Caballero, R., Rodŕıguez-Artalejo, M., del Vado-Vı́rseda, R.: Declarative debug-
ging of missing answers in constraint functional-logic programming. In: Dahl, V.,
Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 425–427. Springer, Heidelberg
(2007)

10. Caballero, R., Rodŕıguez-Artalejo, M., del Vado-Vı́rseda, R.: Algorithmic debug-
ging of missing answers in constraint functional-logic programming. Technical Re-
port DSIC 2/08, Universidad Complutense de Madrid (2008),
http://gpd.sip.ucm.es/papers.html

http://gpd.sip.ucm.es/papers.html

Declarative Diagnosis of Missing Answers in CFLP 321

11. del Vado-Vı́rseda, R.: Declarative constraint programming with definitional trees.
In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, pp. 184–199. Springer,
Heidelberg (2005)

12. Estévez, S., del Vado-Vı́rseda, R.: Designing an efficient computation strategy in
CFLP(FD) using definitional trees. In: WCFLP 2005, pp. 23–31. ACM Press, New
York (2005)

13. Fernández, A.J., Hortalá-González, M.T., Sáenz-Pérez, F., del Vado-Vı́rseda, R.:
Constraint functional logic programming over finite domains. Theory and Practice
of Logic Programming 7(5), 537–582 (2007)

14. Ferrand, G.: Error diagnosis in logic programming, an adaption of E. Y. Shapiro’s
method. J. Log. Program. 4(3), 177–198 (1987)

15. Ferrand, G., Lesaint, W., Tessier, A.: Towards declarative diagnosis of constraint
programs over finite domains. ArXiv Computer Science e-prints (2003)

16. Hanus, M.: Curry: An integrated functional logic language (version 0.8.2 of march
28, 2006) (2006), http://www.informatik.uni-kiel.de/∼curry

17. Hermenegildo, M., Puebla, G., Bueno, F., López-Garćıa, P.: Abstract verification
and debugging of constraint logic programs. In: O’Sullivan, B. (ed.) CologNet 2002.
LNCS (LNAI), vol. 2627, pp. 1–14. Springer, Heidelberg (2003)

18. Lloyd, J.W.: Declarative error diagnosis. New Gen. Comput. 5(2), 133–154 (1987)
19. López-Fraguas, F.J., Rodŕıguez-Artalejo, M., del Vado-Vı́rseda, R.: A lazy narrow-

ing calculus for declarative constraint programming. In: PPDP 2004, pp. 43–54.
ACM Press, New York (2004)

20. López-Fraguas, F.J., Rodŕıguez-Artalejo, M., Vado-Vı́rseda, R.d.: A new generic
scheme for functional logic programming with constraints. Higher-Order and Sym-
bolic Computation 20(1-2), 73–122 (2007)

21. López-Fraguas, F.J., Sánchez-Hernández, J.: T OY : A multiparadigm declarative
system. In: Narendran, P., Rusinowitch, M. (eds.) RTA 1999. LNCS, vol. 1631, pp.
244–247. Springer, Heidelberg (1999)

22. Naish, L.: A declarative debugging scheme. Journal of Functional and Logic Pro-
gramming 1997(3) (1997)

23. Naish, L., Barbour, T.: A declarative debugger for a logical-functional language.
DSTO General Document 5(2), 91–99 (1995)

24. Nilsson, H.: How to look busy while being as lazy as ever: the implementation of
a lazy functional debugger. J. Funct. Program. 11(6), 629–671 (2001)

25. Nilsson, H., Sparud, J.: The evaluation dependence tree as a basis for lazy func-
tional debugging. Autom. Softw. Eng. 4(2), 121–150 (1997)

26. B. Pope. A Declarative Debugger for Haskell. PhD thesis, Department of Computer
Science and Software Engineering, University of Melbourne (2006)

27. Pope, B., Naish, L.: Practical aspects of declarative debugging in haskell 98. In:
PPDP 2003, pp. 230–240. ACM Press, New York (2003)

28. Shapiro, E.Y.: Algorithmic Program Debugging. MIT Press, Cambridge, MA, USA
(1983)

29. Silva, J.: A comparative study of algorithmic debugging strategies. In: Puebla, G.
(ed.) LOPSTR 2006. LNCS, vol. 4407, pp. 143–159. Springer, Heidelberg (2007)

30. Tessier, A., Ferrand, G.: Declarative diagnosis in the CLP scheme. In: Deransart,
P., Ma�luszyński, J. (eds.) DiSCiPl 1999. LNCS, vol. 1870, pp. 151–174. Springer,
Heidelberg (2000)

http://www.informatik.uni-kiel.de/~curry

	Declarative Diagnosis of Missing Answers in Constraint Functional-Logic Programming
	Introduction
	Motivation
	Declarative Diagnosis of Missing Answers
	Standardized Programs and Negative Theories
	Negative Proof Trees for Answer Collection Assertions
	Declarative Diagnosis of Missing Answers Using Negative Proof Trees

	Implementation in the TOY System
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

