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Abstract. Parsing has been a traditional workbench for showing the virtues of declar-
ative programming. Both logic and functional programming claim the ability of writing
parsers in a natural and concise way. We address here the task from a functional-logic
perspective. By modelling parsers as non-deterministic functions we achieve a very nat-
ural manner of building parsers, which combines the nicest properties of the functional
and logic approaches. In particular, we are able to easily define within our framework
parsers in a style very close to that of functional programming parsers, but using sim-
pler concepts. Moreover, we have moved beyond usual declarative approaches to parsers,
since the functional-logic parsers presented here can be considered as truly data values.
Thus, interesting properties of the represented grammar, such as ambiguity, can be easily
checked in our purely declarative setting.

1 Introduction

The problem of syntax analysis or parsing has been one of the most thoroughly studied issues
in computer science. Its wide range of applications, from compiler development to natural
languages recognition, is enough to attract the attention of any programming approach. This
has also been the case for logic programming (LP, in short) and functional programming (FP,
in short), and the parsing problem constitutes in fact one of the favorite fields for exhibiting the
virtues of declarative programming, looking for a straightforward way of representing parsers as
proper components of the language. This has been achieved by considering recursive descendent
parsers, usually represented by means of language mechanisms adapted to simulate grammar
rules (e.g. BNF rules).

From the point of view of LP, there is a more or less standard approach [SS86] to the
construction of parsers in LP, which is based on a specific representation for grammars, the so-
called Definite Clause Grammars (DCG’s). DCG’s are not logic programs, although they are
readily translated to them. With DCG’s, one can hide the details of handling the input string to
be parsed, which is passed from parser to parser using the LP technique of difference lists [SS86].
Parsing in LP benefits from the expressive power of non-determinism, which handles almost
effortlessly the non-deterministic essence of grammar specifications. In the case of ambiguous
grammars this means that multiple solutions are automatically provided where possible.

The use of logical variables and unification are also useful in LP parsers. They ease the
construction of output representations, which is carried out explicitly by using an input/output
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extra argument. Moreover, multiple modes of use are allowed, i.e. LP parsers can be regarded as
generators as well as recognizers of sentences, and parsers for some context sensitive languages
can be easily defined.

The main contribution of FP parsers are the so called higher order combinators [Hut92,Fok95].
In addition, the use of monads (see [Wad95]), specially in combination with the do notation
[Lau93,HM97] gives a very appealing structure to the parsers.

Many efforts have been done in the last decade in order to integrate LP and FP into a single
paradigm, functional-logic programming (FLP in short, see [Han94] for a survey). As any other
paradigm, FLP should develop its own programming techniques and methodologies, but little
has been done from this point of view. In this paper the problem of developing FLP parsers in
a systematic way is addressed, trying to answer the question: can FLP contribute significantly
by itself (not just mimicking LP or FP) to the task of writing parsers?

We will show how a suitable combination of LP and FP features leads to parser definitions
as expressive as FP parsers, but based on simpler concepts. Moreover, we have moved beyond
current FP and LP approaches to parsers, for the FLP parsers presented here can be considered
as truly data values. Thus, interesting properties of the represented grammar, such as ambiguity,
can be easily checked in our purely declarative setting.

We stick to a view of FLP whose core notion is that of non-deterministic function. A
framework for such an approach is given in [GH+99], which is extended to cope with higher-
order features in [GHR97], and polymorphic algebraic types in [AR97]. In the approach to
HO of [GHR97] functions are seen from an intensional point of view, where partially applied
functions behave as free data constructors.

The rest of the paper is organized as follows. In the next section we will briefly describe
the specific functional-logic language we are going to use: 7 (O)Y. Section 3 examines the main
characteristics of parsers in LP and FP, choosing the best features of each paradigm to define
our model of FLP parsers. Section 4 is devoted to the definition of some basic parsers and
parser combinators. These functions are the basic pieces we will use to build more complicated
parsers, like the examples presented in Section 5. In Section 6 we show how the ‘intensional’ view
of functions allows 7 O) programs to manipulate parsers as truly data values. In particular,
a suitable fold function for parsers in 70Q) is defined, together with an application of such
function that checks whether a grammar is ambiguous. Finally, Section 7 summarizes some
conclusions.

2 A succinct description of TOY

All the programs in the next sections are written in 7OY[LS99], a purely declarative functional-
logic language with solid theoretical foundations, which can be found in [GH+99,GHR97,AR97].
We present here the subset of the language relevant to this work (see [CLS97] for a more complete
description and a number of representative examples).

A TOY program consists of datatype, type alias and infiz operator definitions, and rules
for defining functions. Syntax is mostly borrowed from Haskell [HAS98], with the remarkable
exception that variables begin with upper-case letters whereas constructor symbols use lower-
case, as function symbols do. In particular, functions are curried and the usual conventions
about associativity of application hold.



Datatype definitions like data nat = zero | suc nat, define new (possibly polymorphic)
constructed types and determine a set of data constructors for each type. The set of all data
constructor symbols will be noted as CS (CS™ for all constructors of arity n).

Types 1,7, ... can be constructed types, tuples (71,...,7,), or functional types of the form
7 — 7'. As usual, — associates to the right. 7)Y provides predefined types such as [A] (the
type of polymorphic lists, for which Prolog notation is used), bool (with constants true and
false), int, real for integer and real numbers, or char (with constants ’a’,’b’, ...). Type
alias definitions like type parser A = [A] — [A] are also allowed. Type alias are simply
abbreviations, but they are useful for writing more readable, self-documenting programs. Strings
(for which we have the definition type string = [char]) can also be written with double
quotes. For instance, "sugar" is the same as [’s’,’u’,’g’,’a’,’r’].

The purpose of a TOY program is to define a set FS of functions. Each f € FS comes with
a given program arity which expresses the number of arguments that must be given to f in
order to make it reducible. We use FS™ for the set of function symbols with program arity n.
Each f € FS™ has an associated principal type of the form 7 — ... = 7, = 7 (where 7 does
not contain —). Number m is called the type arity of f and well-typedness implies that m > n.
As usual in functional programming, types are inferred and, optionally, can be declared in the
program.

With the symbols in C'S, F'S, together with a set of variables X, Y, ..., we form more com-
plex expressions. We distinguish two important syntactic domains: expressions and patterns.
Ezpressions are of the form e := X | c | f | (e1,-.-,en) | (e €), where ¢ € CS, f € FS. As
usual, application associates to the left and parentheses can be omitted accordingly. There-
fore € e;...e, is the same as ((...((e e1) e2)...)e,). Of course expressions are assumed
to be well-typed. Patterns are a special kind of expressions which can be understood as de-
noting data values, i.e. values not subject to further evaluation, in contrast with expressions,
which can be possibly reduced by means of the rules of the program. They are defined by
tu=X | (t1,-..,tn) | ctr...tn| f t1...tn, where c € CS™, n < m, f € FS™, n < m. Notice
that partial applications (i.e., application to less arguments than indicated by the arity) of ¢ and
f are allowed as patterns, which are then called HO patterns, because they have a functional
type. Therefore function symbols, when partially applied, behave as data constructors. HO pat-
terns can be manipulated as any other patterns; in particular, they can be used for matching or
checked for equality. With this intensional point of view, functions become ‘first-class citizens’
in a stronger sense that in the case of ‘classical’ FP. This treatment of HO features is borrowed
from [GHR93,GHR97] and will constitute an useful tool in Sect. 6.

Each function f € FS™ is defined by a set of conditional rules of the form
f t1...thp, =€ <— e :Zellr"aek ::e;c

where (t1 ...t,) forms a tuple of linear (i.e., with no repeated variable) patterns, and e, e;, e} are
expressions. No other conditions (except well-typedness) are imposed to function definitions.
The notation V@pat, with V a variable name and pat a valid pattern, is allowed for the patterns
t;. It represents the so-called as patterns: every occurrence of V in the body or the conditions
of the rule will be automatically replaced by pat.

Rules have a conditional reading: f ¢; ...%, can be reduced to e if all the conditions e; ==
€},-..,ex == e, are satisfied. The condition part is omitted if £ = 0. The symbol == stands



for strict equality, which is the suitable notion (see e.g. [Han94]) for equality when non-strict
functions are considered. With this notion a condition e == e’ can be read as: e and e’ can
be reduced to the same pattern. When used in the condition of a rule, == is better understood
as a constraint (if it is not satisfiable, the computation fails), but the language contemplates
also another use of == as a function, returning the value true in the case described above,
but false when a clash of constructors is detected while reducing both sides. As a syntactic
facility, 7OY allows repeating variables in the head of rules but in this case repetitions are
removed by introducing new variables and strict equations in the condition of the rule. As an
example, the rule f X X = 0 would be transformed intof X Y = 0 <= X == V.

In addition to ==, TOY incorporates other predefined functions like the arithmetic func-
tions +,*, ..., or the functions if then and if then else, for which the more usual syntax
if _ then _ and if _ then _ else _ is allowed. Symbols ==,+,* are all examples of infix
operators. New operators can be defined in 7O)Y by means of infix declarations, like infixr
50 ++ which introduces ++ (used for list concatenation, with standard definition) as a right
associative operator with priority 50. Operators for data constructors must begin with ’:’; like
in the declaration infix 40 :=. Sections, or partial applications of infix operators, like (==3)
or (3==) are also allowed.

Predicates are seen in T(O)Y as true-valued functions. In spite of that, clausal notation is
allowed for predicates, according to the syntax p tj...t, : —by,...,b, which is simply a
syntactic sugar for the functional rule p t1...t,, = true <= by == true,...,b,, == true .

A distinguishing feature of 7 O), heavily used throughout this paper, is that no confluence
properties are required for programs, and therefore functions can be non-deterministic, i.e.
return several values for given (even ground) arguments. For example, the rules coin = 0
and coin = 1 constitute a valid definition for the 0-ary non-deterministic function coin. A
possible reduction of coin would lead to the value 0, but there is another one giving the value
1. The system will try the first rule first, but if backtracking is required by a later failure or by
request of the user, the second one will be tried. Another way of introducing non-determinism
in the definition of a function is by putting extra variables in the right side of the rules, like in
z_list = [O|L]. Although in this case z_list reduces only to [0|L], the free variable L can be
later on instantiated to any list. Therefore, any list of integers is a possible value of z_1ist.

Our language adopts the so called call-time choice semantics for non-deterministic functions.
Call-time choice has the following intuitive meaning: given a function call (f e;...e,), one
chooses some fixed value for each of the e; before applying the rules for f. As an example, if we
consider the function double X = X+X, then the expression (double coin) can be reduced to
0 and 2, but not to 1. As it is shown in [GH+99], call-time choice is perfectly compatible with
non-strict semantics and lazy evaluation, provided sharing is performed for all the occurrences
of a variable in the right-hand side of a rule.

Computing in 7OY means solving goals, which take the form e; == e}, ..., e, == €}, giving
as result a substitution for the variables in the goal making it true. Evaluation of expressions
(required for solving the conditions) is done by a variant of lazy narrowing based on the so-
called demand driven strategy (see [LLR93]). With respect to higher-order functions, a first
order translation following [Gon93] is performed.



3 Our model of parsers

In declarative programming we aim at defining parsers whose definition denote the structure of
the underlying grammar. Consider the following production, written in extended BNF syntax

<expr> ::= <term><plusminus><expr> | <term>

In order to translate properly this rule into a declarative program, we must come out to some
decisions:

(i) How to represent the alternative of parsers, denoted in the rule above by the symbol |.

(ii) How to represent a sequence of parsers like <term><plus minus><expr>.

(iii) Moreover, the parser expr should not only recognize when a sentence belongs to the un-
derlying formal language. It should also return a suitable representation of the parsed sentence.
Hence we must take care of representations when deciding the final structure of parsers.

Before considering these questions in our setting, we will briefly overview the characteristics
of parsers in the two main declarative paradigms. In FLP we could remain attached to either
the FP or the LP point of view, but we will show how a careful combination of both perspectives
leads to the same expressiveness with simpler parser definitions. In the following discussion the
LP point of view is represented by pure Prolog, while functional parsers are those of Haskell
([HAS98]) as described in [Fok95,Wad95,HM97].

3.1 Review of LP and FP parsers

As common ground, both paradigms represent the sentence to be parsed as a list of terminals.
This list is provided as an input parameter to the parser, which tries to recognize a prefix
returning the non-consumed part. This part, the output sentence, is then supplied as input for
the next parser connected in sequence. Now we summarize some of the main differences between
both approaches with respect to the points (i), (ii) and (iii) mentioned above.

In Logic Programming all the values need to be arguments of some predicate. Thus the
input and output sentences and the representation must be parameters of the parser predicate.
In addition to that

(i) The non-deterministic nature of grammar specifications is easily handled in Prolog, just
representing different alternatives through different rules for the same predicate. The built-in
mechanism of Prolog will initally choose the first rule. If it fails, or more solutions are requested
by the user, the next alternative is tried by means of backtracking.

(ii) Input and output lists are explicit arguments when writing parsers in sequence, as witnessed
by the Prolog definition: expr(I,0) : — term(I,01), plusminus(01,02), expr(02,0).
This notation is rather tedious, and is avoided in Prolog systems by introducing a new formal-
ism which conceals the passing of parameters, namely the DCG’s. Using DCG’s one can write
the more appealing rule expr — term, plus_minus, expr.

(iii) The representation also needs to be an argument, usually used as an output value. How-
ever, in this case, it is not a problem but an advantage, as it permits defining explicitly the
construction of new representations from those of their components, as in the definition:

expr(R) — term(T) , [+], expr(E), {R is T+E}.
expr(R) — term(R).



In Functional Programming, input values must be parameters of functions, and output
values must be results of evaluating functions. Therefore, the input sentence is the only input
parameter of a parser function, while the representation and the output sentence are its result
value, usually in the shape of a pair (repr,sent). The solutions provided to the questions of
the points (i), (ii) and (iii) mentioned above are:

(i) Since non-determinism is not a built-in mechanism of functional languages, the alternative
of parsers need to be ‘simulated’. This problem can be solved by using the so called list of
successes (see [Wad85]). The idea is to collect in a list the results of trying each alternative,
hence representing different alternatives through different elements of the list. In such a context,
an empty list means that the parser has failed.

Therefore the type of FP parsers is type Parser rep sym = [sym] — [ (rep,[sym]) 1.
The alternative operator can be defined now as: (p <|> q) s = (p s) ++ (q s).

(ii) The sequence of parsers can be defined by a suitable HO combinator <>, which hides the
passing of the output sentence of each parser as input sentence of the next one. However, the
definition of <*> depends also on the representation, as explained in the following point.

(iii) Often the representation of a parser function must be defined in relation to the representa-
tions of its components. In FP this is achieved through the definition of the sequence operator:
(p <*>q) s=1[ (y,8?) | (x,8) < ps, (y,8”?) < (q x) s’ ] which has to deal
with representations and not only with output sentences. In order to build the parser represen-
tation, the operator <x> takes out the representation of the parser p, which is used as input
argument for the function g, usually a lambda abstraction.

These operators, together with suitable declarations of priority and associativity, allow us
to define

expr = term <*> A t — plusminus <*> A 0o — expr <+> A e — return (o t e)
<|> term

where t stands for a number representing the evaluation of term, o stands for a functional
value (+ or —) and e denotes the result of evaluating the expression of the right-hand side.
Function return can be defined as return x s = [(x,s)]. If we consider parsers as monads
(see [Wad95]), this notation can be abbreviated by using the do notation [Lau93,HM97], which
is provided as a syntactic sugar to combine monads in sequence:

expr = do {t + term, o + plusminus, e + expr, return (o t e) }
<|> term

3.2 Parsers in TOY

Now we are ready to define our model of parsers. In TO), we distinguish between parsers
without representation, which we will call simply parsers, and parsers with representation.
Parsers in 7 O) have the simple type:

parser Sym = [Sym] — [Syml]

that is, they take a sentence and return the non-consumed part of the sentence. Usually Sym
stands for char, but in section 5.3 we will see an example of a language whose sentences are
lists of integer numbers.



(i) The solution for the alternative of parsers provided by LP is simpler than that of FP. How-
ever, the introduction of the HO combinator <|> in FP permits a more expressive notation.
In TOY we can combine the expressiveness of HO combinators of FP with the simpler defini-
tions allowed by non-deterministic features of logic languages: A suitable non-deterministic HO
combinator <|> can be defined in TOY as

(P <|> Q) Sent=P Sent
(P <|> Q) Sent=0Q Sent

(ii) The definition of a sequence combinator < x> in FP avoids the introduction of ad hoc
mechanisms such as DCG’s. However the definition of <*>is complicated as it must take care
of representations. In 7O)Y we also define a combinator <*> for sequence, but using the
straightforward definition:

(P1 <x>P2) I =P201 <<= P11 ==01

that is, the first parser P1 is applied to the input sentence I, and then the second parser is
applied to the value 01 returned by P1.

(iii) The solution provided by LP for handling representations is much simpler than the FP
solution. Therefore, the representations in 7O)Y will be extra (usually output) arguments of
the parser functions. The type of parsers with representation is:

type parser_rep Rep Sym = Rep — parser Sym

It is worth noticing that if P is of type parser _rep then P R will be of type parser. Hence,
we do not need to define an special sequence combinator for parsers with representation: the
operator <> can also be used in such situations.

An alternative combinator for parsers with representation is, however, necessary. It can be
easily defined in terms of <|> as: (P1 <|> P2) Rep = P1 Rep <|> P2 Rep, meaning that
the alternative of values of type parser _rep is converted into an alternative of values of type
parser as soon as the representation Rep is provided.

As a convenient tool for attaching representations to parsers we define the combinator >>,
which converts a parser in a parser_rep, as:

(>>)::parser A - B — parserrep B A
(P >> Expr) RI=0<=P1I==0, Expr ==

That is, the variable R standing for the representation is matched with the expression Expr
after applying the parser to the input sentence.

Before ending this section we declare the precedence of the combinators <*>, >>, <|>
and <| >, together with their associativity. These definitions allow one to omit unnecessary
parentheses.

infixr 40 <> infixr 30 >> infixr 20 <[>, <|>



4 Simple parsers and combinators

In this section we introduce a set of simple parsers and parser combinators that we will use to
build more complicated parsers later. They are also our first examples of parsers in 7O) and
are based on the FP parsers described in [Fok95,Hut92].

The simplest parser, empty, recognizes the empty sentence, which is a prefix of every sen-
tence. Hence, empty always succeeds without consuming any prefix of its input:

empty:: parser A
empty S = S

Parser terminal T recognizes a single symbol T, failing otherwise.

terminal:: A — parser A
terminal T [T|L] = L

Sometimes it is desirable to recognize not a fixed symbol, but any one fulfilling a given property
P. Function satisfy accomplishes this aim:

satisfy:: (A — bool) — parserrep A A
satisfy P X [X|L] = if P X then L

Notice that satisfy P is a parser with representation, as it returns as representation the
recognized terminal X. For instance, the next parser recognizes either a letter or a digit:

alpha = satisfy is_letter < |> satisfy is_ digit

assuming suitable definitions for is_letter and is_digit.

In section 3 we introduced some parser combinators: <*>, <|> and >>. Here we introduce
two new ones: star and some. Combinator star represents the repetition zero or more times
of the parser with representation P. The representation retrieved by star P is a list collecting
the representations of each repetition of P.

star:: parserrep A B — parserrep [A] B
star P = P X <> (star P) Xs >> [X|Xs]
<|> empty >> [1]

Function some represents the repetition at least once of the same parser, and can be defined
easily in terms of star: some P = P X <> star P Xs >> [X|Xs].

5 Examples

This section is devoted to present some examples of parsers in 7 (O). We intend to show how,
by means of the simple basic parsers and parser combinators defined before, we achieve the
same expressiveness as FP parsers. Furthermore, interesting capabilities of LP parsers, such as
the possibility of generating sentences instead of recognizing them, are preserved.



expression,term,factor,num,digit: :parser_rep real char
digit::parser_rep char char
plus minus,prod_div::parser_rep (real— real— real) char

expression = term T <*> plusminus Op <*> expression E >> (0p T E)
<|> term

term = factor F <#> proddiv Op <*>term T >> (Op F T)
<|> factor

factor = terminal ’(’ <*> expression E <#> terminal ’)’ >> E
<[> num

plus minus = terminal ’+° >> (+)
<|> terminal ’-’ >> (-)

prod_div = terminal %’ >> (%)

<|> terminal */° >> (/)

num
digit

some digit L >> (numeric_value L)
satisfy is_digit

Fig. 1. Parser for arithmetic expressions

5.1 Arithmetic Expressions

The parser showed in figure 1 recognizes arithmetic expressions made from integer numbers,
the operators +, -, *, / and parentheses. The main parser is expression which returns as
representation the numeric value of the expression. The first rule says that an expression is
either a term followed by an operator + or - and ended by another expression or simply a
term. In the first case the combinator >> shows that the representation of the expression is the
result of applying the representation of the operator to those of the two other components. In
the second case the representation of the expression is the representation of the term. Among
the rest of the parsers, we must point out the introduction of a function numeric_value which
converts a string of digits into its numeric value. The definition of this function relies on the
standard functions foldl1l and map: numeric value L = foldll ((+).(10%)) (map val L)
and constitutes a typical example of how FLP inherits the higher-order machinery usual in FP.
For instance, the goal expression R "(10+5%2) /4" == [] succeeds with R ==

5.2 Parsers as generators

Owing to the possibility of including logical variables in goals, FLP parsers may be regarded as
generators as well as recognizers. Consider for instance the parser

palin=empty <[> a <[> b <|> a <#> palin <#>a <[> b <*> palin <x> b
a = terminal ’a’
b = terminal ’b’



which recognizes the language of the palindrome words over the alphabet ¥ = {a,b}. Using
this parser we may ‘ask’ for sentences of length two in the language recognized by palin:

palin [X,Y] == []

Two answers are retrieved, namely X=’a’, Y=’a’ and X="b’, Y=’b’, meaning that "ea” and
”bb” are the only words of length two in this language.

5.3 Numerical Constraints

The growing interest in languages representing spatial relationships (e.g. visual languages
[HMO91]) has introduced the study of numerical constraints in relation to the parsing problem.
Here we show a very simple but suggestive example of how our parsers can integrate numerical
constraints easily.

Suppose we are interested in a parser for recognizing bozes, regarding a box as a rectangle
whose sides are parallel to the X and Y axes. The terminals of the language will be pairs of
integers representing points in the plane, and a valid sentence will be a sequence of four points
standing for the corners of the box, beginning with the lower-left and following anti-clockwise.
The desired representation is a pair of points representing the lower-left and the upper-right
corners of the box.

box:: parser rep ((real,real),(real,real)) (real,real)

box =point (X1,Y1) <*> point (X2,Y2) <>
point (X3,Y3) <*> point (X4,Y4) >> ((X1,Y1),(X3,Y3))
< Y1==Y2, X1==X4, X2==X3,Y4==Y3, Yi<Y4, X1<X2

point:: parser rep (real,real) (real,real)
point = terminal (X,Y) >> (X,Y)

The conditions assure that the points actually represent a box. Note that these constraints are
settled before parsing the point. As a consequence, if the points do not have the shape of a box,
the parser can fail as soon as possible. For instance, if the condition Y1==Y2 is not verified, the
parser will fail just after parsing the second point.

For our example to work properly, the language must be able to handle numerical con-
straints concerning still uninstantiated variables, and to check incrementally the accumulated
constraints whenever new ones are imposed during the computation. Such an extension of the
language considered so far is described in [AH+96], and is actually implemented in the system
TOY (with such this example is indeed executable). For example we can fix two points of the
box and ask TOY for the conditions that the other two points must satisfy to form a box:

box R [(1,2), (4,2), P, Q] == []
The goal succeeds, and T OY returns the following answer:
R==((1, 2, (4, &) P==(4, &) Q==(01, A {A>2.0}

which are the equations that the variables must satisfy, including an arithmetical constraint.



6 Parsers as data

In previous sections the advantages of defining parsers in 7 O) have been discussed. Here
we intend to show how functional-logic languages allowing higher-order patterns can consider
parsers as truly first class data values, in a broader sense of the term than usual. It is worthwhile
to point out that the following discussion is held in a purely declarative framework.

6.1 The structure of 7O parsers

Consider the parser ab defined as: ab = terminal ’a’ <x> terminal ’b’ Function ab can
be reduced directly to its right-hand side (terminal ’a’ <> terminal ’b’), while <*> and
terminal need to be applied to the input sentence in order to be reduced. Therefore we can say
that the ’structure’ of ab is of the shape A <*> B, where both A and B are of the form terminal
T. The interesting point is that A <*> B and terminal T are valid HO patterns (see Sec. 2). In
general, any parser P defined through the basic components {<x> , <|>, >> , empty, satisfy,
terminal}, can be decomposed by matching it against suitable HO patterns. In this context,
the basic components can be effectively considered as data constructors, and parsers as data
values.

6.2 Folding parsers

Functions fold are widely used in FP. They replace the constructors of structures by given
functions. The most usual examples of these constructions are those that handle lists, i.e. the
standard functions foldr, foldl, ..., but the same technique can be applied to structures other
than lists (see [MJ95] for many examples). As we have shown above, parsers can be considered
data values, and hence we can define a function fold p that replaces the constructors of a
parser by arbitrary functions. The definition is a little bit tedious, but straightforward:

foldp (Empty,_,_,-,-,_) empty = Empty

foldp (_,Term,_,_,_,.) (terminal T) =Term T

foldp (.,_,Sat,_,_,.) (satisfy P R) =Sat P R

fold_p Fe(_,_,_,Seq,_,.) ((<*>) A B) =Seq (foldp F A ) (foldp F B)
fold p Fe(_,_,_,_,Alt, ) ((<|>) A B) =Alt (foldp F A) (foldp F B)
fold p Fe(_,_,_,_,_,Rep) (( >>) A B R) =Rep (foldp F A) BR

The first argument of fold p is a tuple of the form (Empty, Term, Sat, Seq, Alt, Rep)
with the functions that will replace the ‘constructors’ empty, terminal, satisfy, <*> , <|>
and >> respectively. The second argument is the parser we want ‘fold’. Function fold p is
applied recursively to the structure of the parser, replacing each constructor by its correspondent
function. At first sight, function fold_p might seem rather unuseful. Indeed, most of the parsers
definitions are recursive, and hence their basic structures are infinite: function fold_p would
peer into such structures forever, if normal forms were being looked for. Instead, we will show
that, due to lazy evaluation, function fold p allows us to check interesting properties of the
represented grammar, such as ambiguity. Observe that (apart from syntax details) the definition
of fold_p is by no means a valid Haskellprogram, due to the presence of HO patterns.



6.3 Checking ambiguity

We say that a grammar specification is ambiguous when a sentence exists with more than one
parse tree. Consider for instance the grammar represented by the following 7 O) parser (we
have labelled the productions with P1, P2 and P3):

s =terminal ’i’ <*> s <%> terminal ’e’ <*> s (P1)
<|> terminal ’i’ <x> s (P2)
<|> terminal ’o’ (P3)

This grammar is ambiguous, since the sentence iioeo can be derived following either the left
derivation P1, P2, P3, P3or P2, P1, P3, P3. As ambiguity is not a nice property when defining
grammars for programming languages, we would like to define a function that look for ambiguous
words. A possible solution is to define a parser with representation s’, whose representation is
the parse tree. By using s’ we can look for sentences with two different representations.

However this means that we need to define a parser P’ each time we want to study the
ambiguity of a parser P. Obviously, it is much better to mechanize this process by defining a
suitable function build tree that converts a given parser into a new parser that returns as
representation the parser tree. This function can be defined in terms of fold_p as follows:

build tree :: parser A — parser_rep [int] A
build tree = fold p (empty_t,term t,sat_t,seq_t,alt_t,rep_t)

where

empty_t = empty >> [1]

termt T = terminal T > []

sat_t P RI = satisfy P RI > []

seq_t P1 P2 = P1 R1 <x> P2 R2 >> R1++R2

alt_t P1 P2 = P1R >> [1|R]
<|>P2 R >> [2|R]

rep-t P Expr Rep = (P Tree >> Expr) Rep >> Tree

To represent the parse tree we use a list which collects the chosen alternatives. In the case of
empty, terminal and satisfy all we return as representation is the empty list. In order to
understand the sequence and the alternative we must keep in mind that P1 and P2 have been
‘folded’ already, i.e they are parsers with representation. The sequence applies each parser and
concatenates the two resulting lists, while the alternative includes the number of the chosen op-
tion in the current representation. Finally, rep_t takes charge of the parsers with representation.
It first applies the parser, getting the list of alternatives. Then the parser is again converted into
a parser with representation, in order to keep the initial representation unaffected. For instance,
the goal build tree s L "iioeo" == [] succeeds withR == [ 1, 2, 1, 2, 2, 2, 2 ] as
well as with R == [ 2, 1, 1, 2, 2, 2, 2 ]. Owing to the right associativity of <|>, the
sequence 2,1 stands for (P2), while 2,2 means that the the production (P3) was applied.

To get the list of alternatives of a parser rep it must be converted into a parser, as
in the goal build tree (expression R) L "1+2" == [] . The application the parser rep
expression to R yields a value of type parser, reduces the occurrences of <|> into <|>, and
provides the extra argument that the HO pattern (( >>) A B R) requires in the definition



of fold_p. This goal succeeds with R==3, L==[ 1, 2, 2, 2, 1, 2, 2, 2, 2 ] as its only
solution, meaning that the sentence has exactly one parse tree.

Now it is easy to define a function that looks for words with two different parser trees:

ambi:: parser A — [A]
ambi P = W <= gen_word==W, build tree P Rl W==[], build tree P R2 W==[],
not (R1==R2)

The first condition is used to generate general words in a non-deterministic fashion (see below).
The next two conditions try to parse the word twice, while the third condition assures that the
two representations returned are different. If they are equal, then backtracking is enforced and
a new parse is tried. Otherwise the word W admits two different parse trees (i.e. the grammar
is ambiguous) and W is returned. Observe that we are using here the LP capabilities of our
language, since R1 and R2 are new (existential) variables. It is also worth noticing that both the
fold and the parsing of the input sentence are performed at the same time, avoiding the folding
of unsuccessful (and infinite) branches of the parser tree.

Since ambiguity is a semidecidable property, we should only check words in a given range of
length. If we find that the parser is ambiguous for any of these words, we have demonstrated that
it is ambiguous. Otherwise, we can either try a wider range of lengths, or accept this partial
result of non-ambiguity. Owing to this we define a non-deterministic function word from_to
which generates all the general sentences, i.e. lists of variables, whose length is less than or
equal to a given number N.

all words N=[]
all words N= [_|all.words (N-1)] <= N >= 0

Thus we can define gen words, for instance, as: gen words = all words 10. At this point
we can check that s is ambiguous by trying the goal ambi s == W which succeeds with W
== "jjoeo". Conversely, similar goals for the parser with representation expression or for the
parser palin, both defined in Sect. 5, will fail, meaning that there is no expression or palindrome
word whose length is less than or equal to 10 with two different parse trees.

7 Conclusions

This paper shows how a functional-logic language supporting non-deterministic functions al-
lows defining parsers which combine most of the nicest properties of both functional and logic
parsers. Our approach has been presented by means of a concrete language, 7TO), but other
functional-logic languages supporting non-deterministic functions, like Curry [Han99], could
have been used. Specifically, the expressiveness of 7)Y parsers is akin to that of FP parsers,
but based on simpler concepts and definitions. This is due to the adoption in our model of
typical LP characteristics, like the natural way of handling non-determinism provided by non-
deterministic computations. Also, parsing in 7 O)Y benefits from the use of logical variables to
return representations, thus avoiding the introduction of monads and lambda abstractions. Ac-
tually, this technique can be generalized, and represents a simple and natural FLP alternative to
monads in many situations (see [CL99]). Despite their *functional’ shape, parsers in TO) share
with parsers of LP the possibility of multiple modes of use, generating as well as recognizing



sentences. We have also investigated further possibilities of our approach to parsers, making
use in this case of more specific features of TOY. First, we have briefly indicated how these
parsers benefit from the inclusion of arithmetical constraints. In a different direction, 7O)’s
possibility of using HO patterns in heads of rules has given parsers the role of data values in
a very strong sense. We have defined a fold function for them, and used this function to check
the ambiguity of grammars. Other interesting properties of the underlying grammars, such as
the LL(1) property, can be also checked using the same technique, as shown in [CL98a].
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