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Facultad de Informática, 28040 Madrid, Spain

{rafa,mario}@sip.ucm.es and cromdia@fdi.ucm.es

Abstract. Qualification has been recently introduced as a generaliza-
tion of uncertainty in the field of Logic Programming. In this paper we
investigate a more expressive language for First-Order Functional Logic
Programming with Constraints and Qualification. We present a Rewrit-
ing Logic which characterizes the intended semantics of programs, and
a prototype implementation based on a semantically correct program
transformation. Potential applications of the resulting language include
flexible information retrieval. As a concrete illustration, we show how to
write program rules to compute qualified answers for user queries con-
cerning the books available in a given library.

Keywords: Constraints, Functional Logic Programming, Program Trans-
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1 Introduction

Various extensions of Logic Programming with uncertain reasoning capabilities
have been widely investigated during the last 25 years. The recent recollection
[16] reviews the evolution of the subject from the viewpoint of a committed
researcher. All the proposals in the field replace classical two-valued logic by
some kind of many-valued logic with more than two truth values, which are
attached to computed answers and interpreted as truth degrees.

In a recent paper [14] we have presented a Qualified Logic Programming
scheme QLP(D) parameterized by a qualification domain D, a lattice of so-called
qualification values that are attached to computed answers and interpreted as
a measure of the satisfaction of certain user’s expectations. QLP(D)-programs
are sets of clauses of the form A

α←− B, where the head A is an atom, the body
B is a conjunction of atoms, and α ∈ D is called attenuation factor. Intuitively,
α measures the maximum confidence placed on an inference performed by the
clause. More precisely, any successful application of the clause attaches to the
head a qualification value which cannot exceed the infimum of α◦βi ∈ D, where
βi are the qualification values computed for the body atoms and ◦ is a so-called
attenuation operator, provided by D.
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Uncertain Logic Programming can be expressed by particular instances of
QLP(D), where the user’s expectation is understood as a lower bound for the
truth degree of the computed answer and D is chosen to formalize a lattice of
non-classical truth values. Other choices of D can be designed to model other
kinds of user expectations, as e.g. an upper bound for the size of the logical proof
underlying the computed answer. As shown in [3], the QLP(D) scheme is also well
suited to deal with Uncertain Logic Programming based on similarity relations
in the line of [15]. Therefore, Qualified Logic Programming has a potential for
flexible information retrieval applications, where the answers computed for user’s
queries may match the user’s expectations only to some degree. As shown in [14],
several useful instances of QLP(D) can be conveniently implemented by using
constraint solving techniques.

In this paper we investigate an extension of QLP(D) to a more expres-
sive scheme, supporting computation with first-order lazy functions and con-
straints. More precisely, we consider the first-order fragment of CFLP(C), a
generic scheme for functional logic programming with constraints over a para-
metrically given domain C presented in [9]. We propose an extended scheme
QCFLP(D, C) where the additional parameter D stands for a qualification do-
main. QCFLP(D, C)-programs are sets of conditional rewrite rules of the form
f(tn) α−→ r ⇐ Δ, where the condition Δ is a conjunction of C-constraints that
may involve user defined functions, and α ∈ D is an attenuation factor. As in
the logic programming case, α measures the maximum confidence placed on an
inference performed by the rule: any successful application of the rule attaches
to the computed result a qualification value which cannot exceed the infimum
of α ◦ βi ∈ D, where βi are the qualification values computed for r and Δ, and ◦
is D’s attenuation operator. QLP(D) program clauses can be easily formulated
as a particular case of QCFLP(D, C) program rules.

As far as we know, no related work covers the expressivity of our approach.
Guadarrama et al. [6] have proposed to use real arithmetic constraints as an
implementation tool for a Fuzzy Prolog, but their language does not support
constraint programming as such. Starting from the field of natural language pro-
cessing, Riezler [11,12] has developed quantitative and probabilistic extensions
of the classical CLP(C) scheme with the aim of computing good parse trees for
constraint logic grammars, but his work bears no relation to functional program-
ming. Moreno and Pascual [10] have investigated similarity-based unification in
the context of needed narrowing [1], a narrowing strategy using so-called defini-
tional trees that underlies the operational semantics of functional logic languages
such as Curry [7] and T OY [2], but they use neither constraints nor attenuation
factors and they provide no declarative semantics.

Figure 1 below shows a small set of QCFLP(U ,R) program rules, called the
library program in the rest of the paper. The concrete syntax is inspired by the
functional logic language T OY, but the ideas and results of this paper could
be applied also to Curry and other similar languages. In this example, U stands
for a particular qualification domain which supports uncertain truth values in
the real interval [0, 1], while R stands for a particular constraint domain which
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%% Data types:
type pages, id = int
type title, author, language, genre = [char]
data vocabularyLevel = easy | medium | difficult
data readerLevel = basic | intermediate | upper | proficiency
data book = book(id, title, author, language, genre, vocabularyLevel, pages)

%% Simple library, represented as list of books:
library :: [book]
library --> [ book(1, "Tintin", "Herge", "French", "Comic", easy, 65),

book(2, "Dune", "F. P. Herbert", "English", "SciFi", medium, 345),
book(3, "Kritik der reinen Vernunft", "Immanuel Kant", "German",

"Philosophy", difficult, 1011),
book(4, "Beim Hauten der Zwiebel", "Gunter Grass", "German",

"Biography", medium, 432) ]

%% Auxiliary function for computing list membership:
member(B,[]) --> false
member(B,H:_T) --> true <== B == H
member(B,H:T) --> member(B,T) <== B /= H

%% Functions for getting the explicit attributes of a given book:
getId(book(Id,_Title,_Author,_Lang,_Genre,_VocLvl,_Pages)) --> Id
getTitle(book(_Id,Title,_Author,_Lang,_Genre,_VocLvl,_Pages)) --> Title
getAuthor(book(_Id,_Title,Author,_Lang,_Genre,_VocLvl,_Pages)) --> Author
getLanguage(book(_Id,_Title,_Author,Lang,_Genre,_VocLvl,_Pages)) --> Lang
getGenre(book(_Id,_Title,_Author,_Lang,Genre,_VocLvl,_Pages)) --> Genre
getVocabularyLevel(book(_Id,_Title,_Author,_Lang,_Genre,VocLvl,_Pages)) --> VocLvl
getPages(book(_Id,_Title,_Author,_Lang,_Genre,_VocLvl,Pages)) --> Pages

%% Function for guessing the genre of a given book:
guessGenre(B) --> getGenre(B)
guessGenre(B) -0.9-> "Fantasy" <== guessGenre(B) == "SciFi"
guessGenre(B) -0.8-> "Essay" <== guessGenre(B) == "Philosophy"
guessGenre(B) -0.7-> "Essay" <== guessGenre(B) == "Biography"
guessGenre(B) -0.7-> "Adventure" <== guessGenre(B) == "Fantasy"

%% Function for guessing the reader level of a given book:
guessReaderLevel(B) --> basic <== getVocabularyLevel(B) == easy, getPages(B) < 50
guessReaderLevel(B) -0.8-> intermediate <== getVocabularyLevel(B) == easy, getPages(B) >= 50
guessReaderLevel(B) -0.9-> basic <== guessGenre(B) == "Children"
guessReaderLevel(B) -0.9-> proficiency <== getVocabularyLevel(B) == difficult,

getPages(B) >= 200
guessReaderLevel(B) -0.8-> upper <== getVocabularyLevel(B) == difficult, getPages(B) < 200
guessReaderLevel(B) -0.8-> intermediate <== getVocabularyLevel(B) == medium
guessReaderLevel(B) -0.7-> upper <== getVocabularyLevel(B) == medium

%% Function for answering a particular kind of user’s query:
search(Language,Genre,Level) --> getId(B) <== member(B,library),

getLanguage(B) == Language,
guessReaderLevel(B) == Level,
guessGenre(B) == Genre

Fig. 1. Library with books in different languages

supports arithmetic constraints over the real numbers; see Section 2 for more
details.

The program rules are intended to encode expert knowledge for computing
qualified answers to user’s queries concerning the books available in a simplified
library, represented as a list of objects of type book. The various get func-
tions extract the explicit values of book attributes. Functions guessGenre and
guessReaderLevelperform qualified inferences relying on analogies between dif-
ferent genres and heuristic rules to estimate reader levels on the basis of other
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features of a given book, respectively. For instance, the second rule for guessGenre
infers the genre "Fantasy" with attenuation 0.9 for a book B whose genre is
already known to be "SciFi". Some program rules, as e.g. those of the auxiliary
function member, have attached no explicit attenuation factor. By convention,
this is understood as the implicit attachment of the attenuation factor 1.0, the
top value of U . For any instance of the QCFLP(D, C) scheme, a similar con-
vention allows to view CFLP(C)-program rules as QCFLP(D, C)-program rules
whose attached qualification is optimal.

The last rule for function search encodes a method for computing qualified
answers to a particular kind of user’s queries. Therefore, the queries can be
formulated as goals to be solved by the program fragment. For instance, answer-
ing the query of a user who wants to find a book of genre "Essay", language
"German" and user level intermediate with a certainty degree of at least 0.65
can be formulated as the goal:

(search("German","Essay",intermediate) == R) # W | W >= 0.65

The techniques presented in Section 4 can be used to translate the QCFLP(U ,R)
program rules and goal into the CFLP(R) language, which is implemented in
the T OY system. Solving the translated goal in T OY computes the answer
{R �→ 4}{0.65 ≤W,W ≤ 0.7}, ensuring that the library book with id 4 satisfies
the query’s requirements with any certainty degree in the interval [0.65,0.7], in
particular 0.7. The computation uses the 4th program rule of guessGenre to
obtain "Essay" as the book’s genre with qualification 0.7, and the 6th program
rule of guessReaderLevel to obtain intermediate as the reader level with
qualification 0.8.

The rest of the paper is organized as follows. In Section 2 we recall known
proposals concerning qualification and constraint domains, and we introduce a
technical notion needed to relate both kinds of domains for the purposes of this
paper. In Section 3 we present the generic scheme QCFLP(D, C) announced in
this introduction, and we formalize a special Rewriting Logic which characterizes
the declarative semantics of QCFLP(D, C)-programs. In Section 4 we present a
semantically correct program transformation converting QCFLP(D, C) programs
and goals into the qualification-free CFLP(C) programming scheme, which is
supported by existing systems such as T OY . Section 5 concludes and points to
some lines of planned future work. The Technical Report [4] includes full proofs
of the main results in this paper, as well as some additional results concerning
alternative characterizations of program semantics.

2 Qualification and Constraint Domains

A Qualification Domain is any algebraic structure D = 〈D,�,b, t, ◦〉 such that
D is a set of elements called qualification values, 〈D,�,b, t〉 is a lattice with
extreme points b and t w.r.t. the partial ordering � and ◦ : D × D → D
is a so-called attenuation operation satisfying the axioms stated in [14]. When
convenient, D will be also noted as DD.
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The intended use of qualification domains has been explained in the intro-
duction. The examples in this paper will use a particular qualification domain
U whose values represent certainty degrees in the sense of fuzzy logic. Formally,
U = 〈U,≤, 0, 1,×〉, where U = [0, 1] = {d ∈ R | 0 ≤ d ≤ 1}, ≤ is the usual
numerical ordering, and × is the multiplication operation. In this domain, the
bottom and top elements are b = 0 and t = 1, and the infimum of a finite S ⊆ U
is the minimum value min(S), understood as 1 if S = ∅. The reader is referred
to [14] for other useful instances of qualification domains.

Constraint domains are used in Constraint Logic Programming and its ex-
tensions as a tool to provide data values, primitive operations and constraints
tailored to domain-oriented applications. Various formalizations of this notion
are known. In this paper, constraint domains are related to signatures of the
form Σ = 〈DC,PF,DF 〉 where DC =

⋃
n∈N

DCn, PF =
⋃

n∈N
PFn and

DF =
⋃

n∈N
DFn are mutually disjoint sets of data constructor symbols, primi-

tive function symbols and defined function symbols, respectively, ranked by ari-
ties. Given a signatureΣ, a symbol ⊥ to note the undefined value, a set B of basic
values u and a countably infinite set Var of variables X , we define the notions
listed below, where on abbreviates the n-tuple of syntactic objects o1, . . . , on.

– Expressions e ∈ Exp⊥(Σ,B,Var) have the syntax e ::= ⊥|X |u|h(en), where
h ∈ DCn ∪ PFn ∪DFn. In the case n = 0, h(en) is written simply as h.

– Constructor Terms t ∈ Term⊥(Σ,B,Var) have the syntax e ::= ⊥|X |u|c(tn),
where c ∈ DCn. They will be called just terms in the sequel.

– Total Expressions e ∈ Exp(Σ,B,Var) and Total Terms t ∈ Term(Σ,B,Var)
have a similar syntax, with the ⊥ case omitted.

– An expression or term (total or not) is called ground iff it includes no
occurrences of variables. Exp⊥(Σ,B) stands for the set of all ground ex-
pressions. The notations Term⊥(Σ,B), Exp(Σ,B) and Term(Σ,B) have a
similar meaning.

– We note as � the information ordering, defined as the least partial ordering
over Exp⊥(Σ,B,Var) compatible with contexts and verifying ⊥ � e for all
e ∈ Exp⊥(Σ,B,Var).

– Substitutions are defined as mappings σ : Var → Term⊥(Σ,B,Var) assigning
not necessarily total terms to variables. They can be represented as sets of
bindings X �→ t and extended to act over other syntactic objects o. The
domain dom(σ) and variable range vran(σ) are defined in the usual way. We
will write oσ for the result of applying σ to o. The composition σσ′ of two
substitutions is such that o(σσ′) equals (oσ)σ′.

By adapting the definition found in Section 2.2 of [9] to a first-order setting, we
formalize a constraint domain of signature Σ as any algebraic structure of the
form C = 〈C, {pC | p ∈ PF}〉 such that:

1. The carrier set C is Term⊥(Σ,B) for a certain set B of basic values. When
convenient, we note B and C as BC and CC , respectively.

2. pC ⊆ Cn × C, written simply as pC ⊆ C in the case n = 0, is called the
interpretation of p in C. We will write pC(tn)→ t (or simply pC → t if n = 0)
to indicate that (tn, t) ∈ pC .
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3. Each primitive interpretation pC has monotonic and radical behavior w.r.t.
the information ordering �, in the technical sense defined in [4].

Note that symbols h ∈ DC ∪ DF are given no interpretation in C. As we will
see in Section 3, symbols in c ∈ DC are interpreted as free constructors, and the
interpretation of symbols f ∈ DF is program-dependent. We assume that any
signature Σ includes two nullary constructors true and false for the boolean
values, and a binary symbol == ∈ PF 2 used in infix notation and interpreted
as strict equality; see [9] for details. For the examples in this paper we will use a
constraint domainR whose set of basic elements is CR = R and whose primitives
functions correspond to the usual arithmetic operations +,×, . . . and the usual
boolean-valued comparison operations ≤, <, . . . over R. Other useful instances
of constraint domains can be found in [9].

Atomic constraints over C have the form p(en) == v with p ∈ PFn, ei ∈
Exp⊥(Σ,B,Var) and v ∈ Var ∪ DC0 ∪ BC . Atomic constraints of the form
p(en) == true are abbreviated as p(en). In particular, (e1 == e2) == true is
abbreviated as e1 == e2. Atomic constraints of the form (e1 == e2) == false
are abbreviated as e1 /= e2.

Compound constraints are built from atomic constraints using logical con-
junction, existential quantification, and sometimes other logical operations. Con-
straints without occurrences of symbols f ∈ DF are called primitive. We will
note atomic constraints as δ, sets of atomic constraints as Δ, atomic primitive
constraints as π, and sets of atomic primitive constraints as Π . When interpret-
ing sets of constraints, we will treat them as the conjunction of their members.

Ground substitutions η such that Xη ∈ Term⊥(Σ,B) for all X ∈ dom(η) are
called variable valuations over C. The set of all possible variable valuations is
noted ValC . The solution set SolC(Π) ⊆ ValC includes as members those valua-
tions η such that πη is true in C for all π ∈ Π ; see [9] for a formal definition. In
case that SolC(Π) = ∅ we say that Π is unsatisfiable and we write UnsatC(Π).
In case that SolC(Π) ⊆ SolC(π) we say that π is entailed by Π in C and we write
Π |=C π. Note that the notions defined in this paragraph only make sense for
primitive constraints.

In this paper we are interested in pairs consisting of a qualification domain
and a constraint domain that are related in the following technical sense:

Definition 1 (Expressing D in C). A qualification domain D with carrier set
DD is expressible in a constraint domain C with carrier set CC if DD \{b} ⊆ CC
and the two following requirements are satisfied:

1. There is a primitive C-constraint qVal(X) depending on the variable X, such
that SolC(qVal(X)) = {η ∈ ValC | η(X) ∈ DD \ {b}}.

2. There is a primitive C-constraint qBound(X,Y, Z) depending on the variables
X, Y , Z, such that any η ∈ ValC such that η(X), η(Y ), η(Z) ∈ DD \ {b}
verifies η ∈ SolC(qBound(X,Y, Z))⇐⇒ η(X) � η(Y ) ◦ η(Z). ��

Intuitively, qBound(X,Y, Z) encodes theD-statementX � Y ◦Z as a C-constraint.
As convenient notations, we will write �X � Y ◦Z�, �X � Y � and �X � Y � in
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place of qBound(X,Y, Z), qBound(X, t, Y ) and qBound(Y, t, X), respectively. In
the sequel, C-constraints of the form �κ� are called qualification constraints, and
Ω is used as notation for sets of qualification constraints. We also write ValD
for the set of all μ ∈ ValC such that Xμ ∈ DD \ {b} for all X ∈ dom(μ), called
D-valuations.

Note that U can be expressed in R, because DU \ {0} = (0, 1] ⊆ R ⊆ CR,
qVal(X) can be built as the R-constraint 0 < X ∧ X ≤ 1 and �X � Y ◦ Z�
can be built as the R-constraint X ≤ Y × Z. Other instances of qualification
domains presented in [14] are also expressible in R.

3 A Qualified Declarative Programming Scheme

In this section we present the scheme QCFLP(D, C) announced in the Introduc-
tion and its declarative semantics. The parameters D and C stand for a qualifi-
cation domain and a constraint domain with certain signature Σ, respectively.
By convention, we only allow those instances of the scheme verifying that D is
expressible in C in the sense of Definition 1. For example, QCFLP(U ,R) is an
allowed instance.

A QCFLP(D, C)-program is a set P of program rules. A program rule has
the form f(tn) α−→ r ⇐ Δ where f ∈ DFn, tn is a linear sequence of Σ-terms
(where each variable occurs just once), α ∈ DD \ {b} is an attenuation factor, r
is a Σ-expression and Δ is a sequence of atomic C-constraints δj (1 ≤ j ≤ m),
interpreted as conjunction. The undefined symbol ⊥ is not allowed to occur in
program rules. The library program shown in Figure 1 serves as an example
of QCFLP(U ,R)-program. Leaving aside the attenuation factors, this is clearly
not a confluent conditional term rewriting system. Certain program rules, as e.g.
those for guessGenre, are intended to specify the behavior of non-deterministic
functions. As argued elsewhere [13], the semantics of non-deterministic functions
for the purposes of Functional Logic Programming is not suitably described by
ordinary rewriting. We overcome this difficulty by designing a formal inference
system noted QCRWL(D, C) and called Qualified Constrained Rewriting Logic.
First, we define the kind of statements that can be inferred in this logic:

Definition 2 (qc-Statements). Assume a partial Σ-expression e, partial Σ-
terms t, t′, tn, a qualification value d ∈ DD \{b}, an atomic C-constraint δ and a
finite set of atomic primitive C-constraints Π. A qualified constrained statement
(briefly, qc-statement) ϕ must have one of the following two forms:

1. qc-production (e→ t)�d⇐ Π. Such a qc-statement is called trivial iff either
t is ⊥ or else UnsatC(Π). Its intuitive meaning is that a rewrite sequence
e→∗ t′ using program rules and with attached qualification value d is allowed
in our intended semantics for some t′ � t, under the assumption that Π
holds. By convention, qc-productions of the form (f(tn) → t)�d ⇐ Π with
f ∈ DFn are called qc-facts.

2. qc-atom δ�d ⇐ Π. Such a qc-statement is called trivial iff UnsatC(Π). Its
intuitive meaning is that δ is entailed by the program rules with attached
qualification value d, under the assumption that Π holds. ��
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QTI
ϕ

if ϕ is a trivial qc-statement.

QRR
(v → v)�d⇐ Π

if v ∈ Var ∪ BC and d ∈ DD \ {b}.

QDC
( (ei → ti)�di ⇐ Π )i=1...n

(c(en) → c(tn))�d⇐ Π

if c ∈ DCn and d ∈ DD \ {b}
verifies d � di (1 ≤ i ≤ n).

QDFP
( (ei → ti)�di ⇐ Π )i=1...n (r → t)�d′0 ⇐ Π (δj�d

′
j ⇐ Π)j=1...m

(f(en) → t)�d⇐ Π

if f ∈ DFn and (f(tn)
α−→ r ⇐ δ1, . . . , δm) ∈ [P ]⊥ where [P ]⊥ = {Rlθ |

Rl is a rule in P and θ is a substitution} is the set of program rule instances,
and d ∈ DD \ {b} verifies d � di (1 ≤ i ≤ n), d � α ◦ d′j (0 ≤ j ≤ m).

QPF
( (ei → ti)�di ⇐ Π )i=1...n

(p(en) → v)�d⇐ Π
if p ∈ PFn, v ∈ Var ∪DC0 ∪ BC,

Π |=C p(tn) → v and d ∈ DD \ {b} verifies d � di (1 ≤ i ≤ n).

QAC
( (ei → ti)�di ⇐ Π )i=1...n

(p(en) == v)�d⇐ Π
if p ∈ PFn, v ∈ Var ∪DC0 ∪BC,

Π |=C p(tn) == v and d ∈ DD \ {b} verifies d � di (1 ≤ i ≤ n).

Fig. 2. Qualified Constrained Rewriting Logic

Next, we define QCRWL(D, C) as the formal system consisting of the six in-
ference rules displayed in Fig. 2. They are based on the first-order fragment of
the Constrained Rewriting Logic presented in [9], suitably extended to man-
age attached qualification values. These inference rules formalize provability of
qc-statements according to their intuitive meanings. In particular, QDFP for-
malizes the applications of a program rule instance to infer that f(en) returns
a result t with qualification d. Note that d is bounded by the qualifications di

corresponding to the evaluation of ei, and also by α ◦ d′j corresponding to the
evaluation of the right hand side and the conditions of the rule attenuated by α.

In the sequel we use the notation P �D,C ϕ to indicate that ϕ can be inferred
from P in QCRWL(D, C). By convention, we agree that no other inference rule
is used whenever QTI is applicable. Therefore, trivial qc-statements can only
be inferred by rule QTI. As usual in formal inference systems, QCRWL(D, C)
proofs can be represented as trees whose nodes correspond to inference steps.
For example, if P is the library program, Π is empty, and ψ is

(guessGenre(book(4,"Beim Hauten der Zwiebel","Gunter Grass",
"German","Biography", medium, 432)) --> "Essay")#0.7
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then P �U ,R ψ ⇐ Π with a proof tree whose root inference can be chosen as
QDFP using a suitable instance of the 4th program rule for guessGenre.

Extending ideas from [9], it is possible to define qc-interpretations as sets I
of qc-facts that verify certain closure conditions. Moreover, models of P can be
defined to be those interpretations that satisfy the program rules in a suitable
sense. The following result can be proved:

Theorem 1 (Least Program Model). For any QCFLP(D, C)-program P,
SP = {ϕ | ϕ is a qc-fact and P �D,C ϕ} is the least model of P w.r.t. set inclu-
sion. An alternative characterization of SP as least fixpoint is also possible. ��

Assume now a QCFLP(D, C)-program P and a countable set War of so-called
qualification variables, disjoint from Var and C’s signature Σ. Then:

Definition 3 (Goals and their Solutions).

1. A goal G for P has the form δ1�W1, . . . , δm�Wm � W1 � β1, . . . ,Wm � βm,
abbreviated as ( δi�Wi, Wi �βi )i=1...m, where δi�Wi (1 ≤ i ≤ m) are atomic
C-constraints annotated with different qualification variables Wi, and Wi �

βi are so-called threshold conditions, with βi ∈ DD \ {b} (1 ≤ i ≤ m).
2. A solution for G is any triple 〈σ, μ,Π〉 such that σ is a substitution, μ is

a D-valuation, Π is a finite set of atomic primitive C-constraints, and the
following two conditions hold for all 1 ≤ i ≤ m: Wiμ = di � βi, and
P �D,C (δiσ)�di ⇐ Π. The set of all solutions for G is noted SolP(G). ��

Thanks to Theorem 1, solutions of P are valid in the least model SP and hence
in all models of P . A goal for the library program and one solution for it have
been presented in the Introduction. In this particular example, Π = ∅ and the
QCRWL(U ,R) proof needed to check the solution according to Definition 3 can
be formalized by following the intuitive ideas sketched in the Introduction.

4 Implementation by Program Transformation

Goal solving in instances of the CFLP(C) scheme from [9] has been formalized
by means of constrained narrowing procedures as e.g. [8,5], and is supported by
systems such as Curry [7] and T OY [2]. In this section we present a semanti-
cally correct transformation from QCFLP(D, C) into the first-order fragment of
CFLP(C) which can be used for implementing goal solving in QCFLP(D, C).

By abuse of notation, the first-order fragment of the CFLP(C) scheme will
be noted simply as CFLP(C) in the sequel. A formal description of CFLP(C) is
easily derived from the previous Section 3 by simply omitting everything related
to qualification domains and values. Programs P are sets of program rules of the
form f(tn)→ r ⇐ Δ, with no attenuation factors attached. Program semantics is
characterized by a Constrained Rewriting Logic CRWL(C) where c-statements
can be derived from a given program. A c-statement may be a c-production
e → t ⇐ Π or a c-atom δ ⇐ Π . The six inference rules RL of CRWL(C) are
easy to derive from the corresponding rules QRL of QCRWL(D, C). For instance,
the CRWL(C) rule derived from QAC by forgetting qualifications is:



458 R. Caballero, M. Rodŕıguez-Artalejo, and C.A. Romero-Dı́az

AC
( ei → ti ⇐ Π )i=1...n

p(en) == v ⇐ Π

if p ∈ PFn, v ∈ Var ∪DC0 ∪BC
and Π |=C p(tn) == v.

The notation P �C ϕ indicates that ϕ can be inferred from P in CRWL(C).
In analogy to Theorem 1, it is possible to prove that the least model of P w.r.t.
set inclusion can be characterized as SP = {ϕ | ϕ is a c-fact and P �C ϕ}.
In analogy to Definition 3, goals G for a CFLP(C)-program P have the form
δ1, . . . , δm where δj are atomic C-constraints, and SolP(G) is defined as the set
of all the pairs 〈σ,Π〉 such that σ is a substitution, Π is a finite set of atomic
primitive C-constraints, and P �C δjσ ⇐ Π holds for 1 ≤ j ≤ m.

The transformation goes from a source signature Σ into a target signature
Σ′ such that each f ∈ DFn in Σ becomes f ′ ∈ DFn+1 in Σ′, and all the other
symbols in Σ remain the same in Σ′. It works by introducing fresh variables W
to represent the qualification values attached to the results of calls to defined
functions, as well as qualification constraints to be imposed on such variables.
There are four groups of transformation rules displayed in Figure 3. Let us
comment them in order.

Transforming an expression e yields a triple eT = (e′, Ω,W), where Ω is a set
of qualification constraints and W is the set of qualification variables occurring
in e′ at outermost positions. The qualification value attached to e cannot exceed
the infimum in D of the values of the variables W ∈ W , and eT is computed by
recursion on e’s syntactic structure as specified by the transformation rules TAE,
TCE1 and TCE2. Note that TCE2 introduces a new qualification variable W
for each call to a defined function f ∈ DFn and builds a set Ω′ of qualification
constraints ensuring that W must be interpreted as a qualification value not
greater than the qualification values attached to f ’s arguments. TCE1 deals
with calls to constructors and primitive functions just by collecting information
from the arguments, and TAE is self-explanatory.

Unconditional productions and atomic constraints are transformed by means
of TP and TA, respectively, relying on the transformation of expressions in the
obvious way. Relying on TP and TA, TCS transforms a qc-statement of the
form ψ�d ⇐ Π into a c-statement whose conditional part includes, in addition
to Π , the qualification constraints Ω coming from ψT and extra qualification
constraints ensuring that d is not greater than allowed by ψ’s qualification.

Program rules are transformed by TPR. Transforming the left-hand side f(tn)
introduces a fresh symbol f ′ ∈ DFn+1 and a fresh qualification variable W . The
transformed right-hand side r′ comes from rT , and the transformed conditions
are obtained from the constraints coming from rT and δi

T (1 ≤ i ≤ m) by
adding extra qualification constraints to be imposed on W , namely qVal(W ) and
(�W � α◦W ′�)W ′∈W′ , forW ′ =Wr andW ′ =Wi (1 ≤ i ≤ m). By convention,
(�W � α◦W ′�)W ′∈W′ is understood as �W � α� in case thatW ′ = ∅. The idea
is that W ’s value cannot exceed the infimum in D of all the values α ◦ β, for the
different β coming from the qualifications of r and δi (1 ≤ i ≤ m). The result of
applying TPR to all the program rules of a program P will be noted as PT .
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Transforming Expressions

TAE
vT = (v, ∅, ∅) if v ∈ Var ∪BC

TCE1
( ei

T = (e′i, Ωi,Wi) )i=1...n

h(en)T = (h(e′n),
⋃n

i=1Ωi,
⋃n

i=1 Wi)
if h ∈ DCn ∪ PFn

TCE2
( ei

T = (e′i, Ωi,Wi) )i=1...n

f(en)T = (f ′(e′n,W ),Ω′, {W})

if f ∈ DFn and W is a fresh variable,
where Ω′ = (

⋃n
i=1Ωi) ∪ {qVal(W )} ∪ {�W � W ′� |W ′ ∈

⋃n
i=1 Wi}.

Transforming qc-Statements

TP
eT = (e′, Ω, W)

(e→ t)T = (e′ → t, Ω,W)

TA
( ei

T = (e′i, Ωi,Wi) )i=1...n

(p(en) == v)T = ( p(e′n) == v,
⋃n

i=1Ωi,
⋃n

i=1 Wi )

if p ∈ PFn, v ∈ Var ∪DC0 ∪BC .

TCS
ψT = (ψ′, Ω,W)

(ψ�d⇐ Π)T = (ψ′ ⇐ Π,Ω ∪ {�d � W � |W ∈ W}))

if ψ is of the form e→ t or p(en) == v and d ∈ DD.

Transforming Program Rules

TPR
rT = (r′, Ωr,Wr) ( δi

T = (δ′i, Ωi,Wi) )i=1...m

(f(tn)
α−→ r ⇐ δ1, . . . , δm)

T
=

f ′(tn,W ) → r′ ⇐ qVal(W ), Ωr, (�W � α ◦W ′�)W ′∈Wr ,
( Ωi, (�W � α ◦W ′�)W ′∈Wi

, δ′i )i=1...m

where W is a fresh variable.

Transforming Goals

TG
( δi

T = (δ′i, Ωi,Wi) )i=1...m

(( δi�Wi,Wi � βi )i=1...m)T =
( Ωi, qVal(Wi), (�Wi � W �)W∈Wi , �Wi � βi�, δ′i )i=1...m

Fig. 3. Transformation rules
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Finally, TG transforms a goal ( δi�Wi,Wi � βi )i=1...m by transforming each
atomic constraint δi and adding qVal(Wi), (�Wi � W ′�)W ′∈W′

i
and �Wi � βi�

(1 ≤ i ≤ m) to ensure that each Wi is interpreted as a qualification value
not bigger than the qualification computed for δi and satisfying the threshold
condition Wi � βi. In case that W ′

i = ∅, (�Wi � W ′�)W ′∈W′
i

is understood as
�Wi � t�.

Program semantics in QCFLP(D, C) and CFLP(C) is characterized by deriv-
ability in QCRWL(D, C) and CRWL(C), respectively. Therefore, the following
theorem proves the semantic correctness of the program transformation:

Theorem 2. Let P be a QCFLP(D, C)-program and ψ�d ⇐ Π a qc-statement
such that (ψ�d⇐ Π)T = (ψ′ ⇐ Π,Ω′). Then the two following statements are
equivalent:

1. P �D,C ψ�d⇐ Π.
2. PT �C ψ′ρ⇐ Π for some ρ ∈ SolC(Ω′) such that dom(ρ) = var(Ω′).

Proof. (Sketch; a full proof can be found in [4] as Proof of Theorem 3).
[1. ⇒ 2.] (Transformation completeness). Assume P �D,C ψ�d ⇐ Π by means
of a QCRWL(D, C) proof tree T with k nodes. By induction on k we show the
existence of a CRWL(C) proof tree T ′ witnessing PT �C ψ′ρ ⇐ Π for some
ρ ∈ SolC(Ω) such that dom(ρ) = var(Ω′). In the base case k = 1, T contains
just one root node inferred by a QCRWL(D, C) inference rule QRL other than
QDFP and with no premises. Then T ′ can be easily built as a proof tree which
also contains just one root node inferred by the QCRWL(D, C) inference rule
RL with no premises. In the inductive case k > 1 the QCRWL(D, C) inference
rule QRL applied at T ’s root can be neither QTI nor QRR. Here we argue
only for the case where QRL is QAC. In this case ψ has the form p(en) == v
and according to Figure 2 the inference step at T ’s root has the form:

( (ei → ti)�di ⇐ Π )i=1...n

(p(en) == v)�d⇐ Π

where v ∈ Var ∪ DC0 ∪ BC , Π |=C p(tn) == v and d ∈ DD \ {b} verifies
d � di (1 ≤ i ≤ n). Assume ( ei

T = (e′i, Ωi,Wi) )i=1...n, using different fresh
variables W in each case. Then the transformation rules TA and TCS yield
((p(en) == v)�d⇐ Π)T = p(e′n) == v ⇐ Π,Ω′ and ((ei → ti)�d⇐ Π)T =
e′i → ti ⇐ Π,Ω′

i, where Ω′ =
⋃n

i=1Ωi ∪ {�d � W� | W ∈
⋃n

i=1Wi} and
Ω′

i = Ωi ∪ {�di � W� |W ∈ Wi}. For each 1 ≤ i ≤ n, P �D,C (ei → ti)�di ⇐ Π
is witnessed by a QCRWL(D, C) proof tree Ti which is subtree of T and has less
than k nodes. Therefore, by induction hypothesis we get CRWL(C) proof trees
T ′

i (1 ≤ i ≤ n) witnessing PT �C (e′i → ti)ρi ⇐ Π for certain ρi ∈ SolC(Ωi)
such that dom(ρi) = var(Ω′

i). Consider ρ =
⊎n

i=1 ρi ∈ ValD, which is is well
defined because the sets var(Ω′

i), 1 ≤ i ≤ n, are pairwise disjoint. Note that
dom(ρ) =

⋃n
i=1 dom(ρi) =

⋃n
i=1 var(Ω′

i) = war(Ω′). Moreover, ρ ∈ SolC(Ω′).
In fact, for each 1 ≤ i ≤ n, ρ ∈ SolC(Ωi) follows from ρi ∈ SolC(Ωi); and for
each 1 ≤ i ≤ n and each W ∈ Wi, ρ ∈ SolC(�d � W�) follows from d � di
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(ensured by the QAC inference at T ’s root) and ρ ∈ SolC(�di � W�) (ensured
by ρi ∈ SolC(Ω′

i) and �di � W� ∈ Ω′
i). Finally, PT �C ((p(e′n) == v)ρ ⇐ Π is

witnessed by a proof tree T ′ whose root inference using AC has the form

(( e′i → ti)ρ⇐ Π )i=1...n

(p(e′n) == v)ρ⇐ Π

and where each premise (e′i → ti)ρ ⇐ Π is identical to (e′i → ti)ρi ⇐ Π and
therefore proved by the CRWL(C) proof tree T ′

i .

[2.⇒ 1.] (Transformation soundness). Assume ρ ∈ SolC(Ω′) such that dom(ρ) =
var(Ω′) and PT �C ψ′ρ⇐ Π by means of a CRWL(C) proof tree T ′ with k nodes.
Reasoning by induction on k we show the existence of a QCRWL(D, C) proof
tree T witnessing P �D,C ψ�d ⇐ Π . The base case k = 1 is easy. For the
inductive case k > 1 we distinguish cases according to the CRWL(C) inference
rule RL applied at the root of T ′. Here we argue only for the case where RL is
AC. In this case ψ, ψ′, Ω′, the proof tree T ′ and the subtrees T ′

i of T ′ proving
the premises of the AC inference at the root of T ′ have the forms described in
the first part of the proof. For each 1 ≤ i ≤ n, let di = d and ρi = ρ�var(Ω′

i).
Then ρi ∈ SolC(Ω′

i) follows from ρ ∈ SolC(Ω′). Moreover, (e′i → ti)ρi ⇐ Π is
identical to the i-th premise of the AC inference at the root of T ′, and therefore
PT �C (e′i → ti)ρi ⇐ Π is witnessed by T ′

i , which has less than k nodes. By
induction hypothesis we can obtain QCRWL(D, C) proof trees Ti witnessing
P �D,C (ei → ti)�di ⇐ Π . Since d = di, the conditions d � di (1 ≤ i ≤ n)
hold trivially, and T can be built as a QCRWL(D, C) proof tree having the form
described in the beginning, with the inference rule QAC applied at the root and
the proof trees Ti witnessing the premisses. ��

Using Theorem 2 we can prove that the transformation of goals specified in
Figure 3 preserves solutions in the sense of the following result.

Theorem 3. Let G be a goal for a given QCFLP(D, C)-program P. Then, the
two following statements are equivalent:

1. 〈σ, μ,Π〉 ∈ SolP(G).
2. 〈σ � μ � ρ,Π〉 ∈ SolPT (GT ) for some ρ ∈ ValD such that dom(ρ) is the set

of new variables W introduced by the transformation of G.

Proof. Let G = ( δi�Wi,Wi � βi )i=1...m, σ and μ be given. For i = 1 . . .m,
consider δiT = (δ′i, Ωi,Wi) and Ω′

i = Ωi ∪ {�Wi � W� | W ∈ Wi}. According to
Fig. 3, GT = (Ω′

i, qVal(Wi), �Wi � βi�, δ′i)i=1...m. Then, because of Def. 3(2)
and the analogous notion of solution for CFLP(C) goals explained in Sect. 3, the
two statements of the theorem can be reformulated as follows:

(a) Wiμ � βi and P �D,C δiσ�Wiμ⇐ Π hold for i = 1 . . .m.
(b) There exists ρ ∈ ValD with dom(ρ) =

⋃m
i=1 var(Ωi) such that ρ ∈ SolC(Ω′

iμ),
Wiμ � βi and PT �C (δ′iσ)ρ⇐ Π hold for i = 1 . . .m.
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[(a) ⇒ (b)] Assume (a). Note that δiσ�Wiμ⇐ ΠT is δ′iσ ⇐ Π,Ω′
iμ. Applying

Theorem 2 (with ψ = δiσ, d = Wiμ and Π) we obtain PT �C (δ′iσ)ρi ⇐ Π for
some ρi ∈ SolC(Ω′

iμ) with dom(ρi) = var(Ω′
iμ) = var(Ωi). Then (b) holds for

ρ =
⊎m

i=1 ρi.
[(b) ⇒ (a)] Assume (b). Let ρi = ρ�var(Ωi), i = 1 . . .m. Note that (b) ensures
PT �C (δ′iσ)ρi ⇐ Π and ρ ∈ SolC(Ω′

iμ). Then Theorem 2 can be applied (again
with ψ = δiσ, d = Wiμ and Π) to obtain P �D,C δiσ�Wiμ ⇐ Π . Therefore, (a)
holds. ��
As an example of goal solving via the transformation, we consider again the
library program P and the goal G discussed in the Introduction. Both belong
to the instance QCFLP(U ,R) of our scheme. Their translation into CFLP(R)
can be executed in the T OY system [2] after loading the Real Domain Con-
straints library (cflpr). The source and translated code are publicly available
at gpd.sip.ucm.es/cromdia/qlp. Solving the transformed goal in T OY com-
putes the answer announced in the Introduction as follows:

Toy(R)> qVal([W]), W>=0.65, search("German","Essay",intermediate,W) == R

{ R -> 4 }

{ W=<0.7, W>=0.65 }

sol.1, more solutions (y/n/d/a) [y]? no

The best qualification value for W provided by the answer constraints is 0.7.

5 Conclusions and Future Work

The work in this paper is based on the scheme CFLP(C) for functional logic pro-
gramming with constraints presented in [9]. Our main results are: a new program-
ming scheme QCFLP(D, C) extending the first-order fragment of CFLP(C) with
qualified computation capabilities; a rewriting logic QCRWL(D, C) character-
izing QCFLP(D, C)-program semantics; and a transformation of QCFLP(D, C)
into CFLP(C) preserving program semantics and goal solutions, that can be used
as a correct implementation technique. Existing CFLP(C) systems such as T OY
[2] and Curry [7] that use definitional trees as an efficient implementation tool
can easily adopt the implementation, since the structure of definitional trees is
quite obviously preserved by the transformation.

As argued in the Introduction, our scheme is more expressive than the main
related approaches we are aware of. By means of an example dealing with a
simplified library, we have shown that instances of QCFLP(D, C) can serve as a
declarative language for flexible information retrieval problems, where qualified
(rather than exact) answers to user’s queries can be helpful.

As future work we plan to extend QCFLP(D, C) and the program transfor-
mation in order to provide explicit support for similarity-based reasoning, as
well as the higher-order programming features available in CFLP(C). We also
plan to analyze the complexity of the program transformation and to embed
it as part of an enhanced version of the T OY system. Finally, we plan further
research on flexible information retrieval applications, using different instances
of our scheme.
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