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Abstract. The detection of deterministic computations at run-time can
be used to introduce dynamic cuts pruning the search space and thus
increasing the efficiency of functional logic systems. This idea was intro-
duced in an early work of R. Loogen and S. Winkler. However the pro-
posal of these authors cannot be used in current implementations because
it did not consider non-deterministic functions and was not oriented to
the demand driven strategy. Our work adapts and extends the technique,
showing both how to deal with non-deterministic computations, and how
definitional trees can be employed to locate the places where the cuts
will be introduced. An implementation based on a Prolog-translation is
proposed, making the technique easy to implement in current systems
generating Prolog code. Some experiments showing the effectiveness of
the cut are presented.

1 Introduction

Efficiency has been one of the major drawbacks associated with declarative lan-
guages. The problem becomes particularly severe in the case of Logic Program-
ming (LP for short) and Functional Logic Programming (FLP for short), where
the introduction of non-deterministic computations often generates large search
spaces with their associated overheads both in terms of time and space.
The idea of detecting deterministic computations is not new in declarative pro-
gramming. In the case of the LP language Prolog [10], a non-declarative mecha-
nism, the so-called cut, has been introduced. Programs using cuts become much
more efficient, but at the price of becoming non-declarative. Other works [9, 8]
propose declarative alternatives avoiding unnecessary re-evaluations automati-
cally.
Rita Loogen and Stephan Winkler presented in [15] a technique for the run-time
detection of deterministic computations that can be used to safely prune the
search space in functional logic programs. This technique is known as dynamic
cut. The framework of these authors was the FLP programming language BA-
BEL [19]. Unfortunately the programs considered in that work did not include
non-deterministic functions, which are used extensively in FLP nowadays. Also
? Work partially supported by the Spanish CYCIT (project TIC2002-01167 ’MELO-
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the implementation (based on a modification of an abstract machine) did not
follow the demand driven strategy [4, 14], which has since been adopted by all
the current implementations of FLP languages.

Modern functional logic languages like Curry [13] or T OY [16, 1] use non-deter-
ministic functions as a common programming resource allowing to program in a
very concise, yet efficient way, many problems involving search. An early work
in this sense is [20], where it is shown that by a suitable use of the combination
non-deterministic functions + lazy evaluation, large parts of search spaces can
be early pruned, thus resulting in a remarkable gain of efficiency.
Despite of these programming techniques, in the real practice of FLP there are
nevertheless many occasions where the generated search spaces are larger than
necessary. Or even that search can be completely avoided, if not in all uses of a
given program, at least in concrete computations which are deterministic from
the point of view of the result. It is in these cases when the idea of dynamic cut
becomes useful.

Our proposal adapts the original idea of [15] to FLP languages with non-deter-
ministic functions, which introduce some subtle changes in the conditions for the
cut. These dynamic cuts can be easily introduced in a Prolog-based translation
of FLP programs that uses definitional trees. This makes our technique easily
adaptable to the current implementations of FLP languages based on translation
into Prolog code. The result of implementing the dynamic cut is more efficient
executions in the case of deterministic computations and with no serious over-
head in the case of non-deterministic ones, as shown in the runtime table of
Section 6.

The aim of this paper is eminently practical and the technique for introducing
dynamic cuts is presented in a (hopefully) precise but not formal way.

In the following section, after some preliminaries, we describe at the practical
level the operational procedure of FLP by means of a translation into Prolog.
Section 3 discusses several examples motivating the introduction of the dynamic
cut in the implementation of FLP programs. Section 4 introduces more precisely
the key concept of deterministic function, as well as the conditions under which
dynamic cut can be safely used. Section 5 discusses an implementation of the
technique as a modification of the translation scheme. Section 6 presents a table
with the times obtained for the execution, with and without dynamic cut, of
some examples. Finally Section 7 presents some conclusions and future work.

2 Operational Procedure of Functional Logic
Programming: The Prolog Based Approach

2.1 Preliminaries

All the examples in this paper are written in the concrete syntax of the lazy FLP
language T OY [16, 1] but can be easily adapted to other FLP languages like
Curry [13]. In the sequel, we always suppose a given signature Σ = 〈 DC, FS〉,



where DC =
⋃
n∈NDC

n and FS =
⋃
n∈N FS

n are ranked sets of data construc-
tors resp. defined function symbols. We also assume the existence of a countable
set V ar of variables. Variables and constructor symbols serve to build construc-
tor terms, while in expressions also function symbols can occur.

A T OY program is composed of data type declarations, type alias, infix
operators, function type declarations and defining rules for functions symbols.
Each defining rule for a function f ∈ FSn has a left-hand side, a right-hand side
and an optional condition:

(R) f t1 . . . tn︸ ︷︷ ︸
left-hand side

= r︸︷︷︸
right-hand side

⇐ e1 == e′1, . . . , ek == e′k︸ ︷︷ ︸
condition

where ei, e′i and r are expressions (that can contain new extra variables) and
each tj is a constructor term1 with no variable occurring more than once in
different tk, tl. If the condition is empty then ⇐ is omitted, and an equality in
the condition of the form e == true is usually abbreviated to simply e.
We consider goals as expressions e and answers as pairs (t, σ) where t is a con-
structor term representing a result obtained by evaluating e, and σ a substitution
of terms for variables such that dom(σ) ⊆ vars(e). Notice that this notion of
goal, suitable for this work, is compatible with usual goals in T OY which are of
the form: e1 == e′1, . . . , ek == e′k, simply by assuming that an auxiliary func-
tion: main R1 . . . Rn = true <== e1 == e′1, . . . , ek == e′k is introduced, with
{R1, . . . Rn} = vars(e1) ∪ vars(e′1) ∪ . . . ∪ vars(ek) ∪ vars(e′k), and then evalu-
ating the goal main R1 . . . Rn. The introduction of main is also helpful since it
extends the application of dynamic cuts to goals, converted in this way to the
general case of program functions.

Figure 1 shows an example of T OY program. This simple program can be
used to execute simple queries for finding substrings in a given text. A goal of
the form matches (single S) Text succeeds if the string S is part of Text, failing
otherwise. A goal matches (and S S’) Text succeeds whenever both S and S′ are
part of Text, while matches (or S S’) Text indicates that either S or S′ (or both)
are part of Text. Function matches relies on function part which checks if X is
a substring of Y by looking for two existential variables U and V such that Y
results of the concatenation of U , X and V . The labels (R1) . . . (R7) are not
part of the program. They are included because they will be used to distinguish
the program rules below.

Each function is assumed to have a definitional tree [2, 14] with nodes or, case
and try. However, in our setting we will not allow ’multiple tries’, i.e. try nodes
with several program rules, replacing them by nodes or with multiple try children
nodes, one for each rule included in the initial multiple try. The tree obtained

1 Actually in T OY programs the tj ’s can be patterns, which are more general than
constructor terms, since they include the possibility of partial application of function
(or constructor) symbols. But this issue, related to the treatment of HO, is of no
relevance to this paper.



infixr 50 ++
(R1) [ ] ++ Ys = Ys
(R2) [X|Xs] ++ Ys = [X|Xs ++ Ys]

(R3) part X Y = true <==U ++ X ++ V == Y

data query = single [char] | and query query | or query query

(R4) matches (single S) Text = true <== part S Text
(R5) matches (and S S’) Text = true <== matches S Text, matches S’ Text
(R6) matches (or S S’) Text = true <== matches S Text
(R7) matches (or S S’) Text = true <== matches S’ Text

Fig. 1. Simple Queries

by this modification is obviously equivalent and will be more suitable for our
purposes.

For instance a definitional tree for the function matches could be:

dt(matches) ≡ matches(X,Text)→
case X of
〈 single : try (R4)

and : try (R5)
or : matches(or S S’, Text) → or 〈try (R6)

| try (R7)〉 〉

The semantics of our programs has been presented in previous works (see
[12] for instance), where a suitable semantic calculus has been presented as a
convenient framework for lazy functional logic languages.

However, in this paper we will pay attention to the operational semantics
of lazy functional logic languages, since our work introduces a change in the
operational behavior of programs. We assume that goals are solved by means of
an operational mechanism based on needed narrowing with sharing [3, 4, 14], as
well as a Prolog-based implementation as described in [14], consisting mainly in a
translation of source T OY programs into object Prolog programs. A main com-
ponent of the operational mechanism is the computation of head normal forms
(hnf) for expressions. A head normal form is either a variable or a constructor-
rooted expression.

We will take as convenient concrete description of the operational semantics
of a Toy program the semantics of its correspondent Prolog program, which in
particular implies that depth-first search with chronological backtracking is used.
In Section 5 we will discuss the modification of this translation to introduce the



dynamic cuts and argue about its correctness w.r.t. the translation described
next.

2.2 The Translation Scheme

The translation scheme from T OY2 to Prolog, which is fully detailed in [1], is
the result of three stages:

• The source T OY program, which uses higher order syntax, is translated into
T OY-like programs written in first order syntax, following the ideas in [21, 11]

• The compiler introduces suspensions [7, 14] into first order T OY programs.
The idea of suspensions is to replace each subexpression in right-hand sides of
rules with the shape of a function call f(e1, . . . , en) by a Prolog term of the form
susp(f(e1, . . . , en), R, S) (called a suspension) where R and S are initially (i.e,
at the time of translation) new Prolog variables. During execution, parameter
passing may produce many ‘long distance’ copies of a given suspension. If at some
step of the execution the computation of a head normal form for f(e1, . . . , en)
occurs, the variable R will be bound to the obtained value, and we say that
the suspension has been evaluated. Since unification is a global operation in
Prolog, all the copies of the suspension will share, through their own copy of
R, this computed value. The argument S in a suspension is a flag to indicate
if the suspension has been evaluated or not. Initially S is a variable (indicating
a non-evaluated suspension), which is set to a concrete value, say hnf, once the
suspension is evaluated.

• Finally the Prolog clauses which are the final result of the translation are gen-
erated, adding suitable code for strict equality and hnf (to compute head normal
forms). To compute a hnf for an unevaluated suspension susp(f(X1,. . . ,Xn),R,S),
a call f(X1,. . . ,Xn,H) is made to a specific predicate returning in H the desired
head normal form. These are exactly the predicates affected by the introduction
of dynamic cut.

Next we explain in more detail the third phase (code generation), since this will
be the phase affected by the introduction of dynamic cuts.

Given a function f (already in first order syntax and with suspensions replac-
ing the function calls), the Prolog code associated to f will be represented as
prolog(f, dt(f)), where the auxiliary function prolog/2 takes a definitional tree
and a function symbol, possibly different from the function of the definitional
tree (this is to introduce new auxiliary functions), returning as value a set of
Prolog clauses. The Prolog code prolog(f, dt) is obtained by generating code
corresponding to the root of the tree, and then descending recursively in the
branches. We distinguish cases according to the shape of the root of dt.

Case 1 (the root is a case node):

Assume dt ≡ f(s)→ case X of 〈c1 : dt1 . . . cm : dtm〉
2 For the sake of simplicity, we consider here a simplified version of T OY not taking

into account disequality constraints [5, 1]



In this case different branches correspond to incompatible cases in a given posi-
tion.

prolog(g, dt) = { g(s,H) :- hnf(X,HX), g’(sσ,H).} ∪
prolog(g′, dt1) . . . ∪ prolog(g′, dtm)

where σ = X/HX and g’ is a new function symbol.
Case 2 (the root is an or node):
Assume dt ≡ f(s)→ or 〈dt1 | . . . | dtm〉

prolog(g, dt) = { g(s,H) :- g1(s,H).} ∪ . . .∪ { g(s,H) :- gm(s,H).} ∪
prolog(g1, dt1) ∪ . . . ∪ prolog(gm, dtm)

where g1, . . . , gm are new function symbols.
Case 3 (the tree is a leaf try):

Assume dt ≡ try R, where R is a program rule

f(s) = e⇐ l1 == r1, . . . , ln == rn

Then:

prolog(g, dt) ={ g(s,H) :- equal(l1,r1), . . . , equal(ln, rn), hnf(e,H). }

As an example, Figure 2 shows the translation of the function matches. The cor-
respondence between the definitional tree of matches and that code is straightfor-
ward and can be easily checked. Actually, the Prolog code generated by T OY has
several optimizations that we do not show here for simplicity. It is worth point-
ing out that the inclusion of these optimizations is compatible with the dynamic
cut.

3 Motivating Examples

In this section we present some motivating examples showing informally the
two situations where dynamic cuts can be useful: the first one is associated to
or nodes in the definitional trees of semantically deterministic functions, while
the second one is associated to existential conditions in program rules. These
examples as well as several others can be found at:
http://babel.dacya.ucm.es/rafa/cut.
Example 1: Parallel and
Figure 3 shows a correct way of defining the and connective in FLP programming,
known as parallel and.
A definitional tree for this function is:

dt(&&) ≡ X && Y →
or 〈case X of

〈 false : false && Y → try R1

true : true && Y → case Y of 〈true : try R3〉〉
| case Y of 〈false : try R2〉 〉



matches(X, Text, H) :-
hnf(X, HX),
matches1(HX, Text, H).

% the three possibilities of the ’case’ branch
matches1(single(S), Text, H) :-

equal(susp(part(S, Text), R, Flag),true)
hnf(true,H).

matches1(and(S, S’), Text, H) :-
equal(susp(matches(S, Text), R1, Flag1),true),
equal(susp(matches(S’, Text), R2, Flag2),true),
hnf(true,H).

matches1(or(S,S’), Text, H) :-
matches1’(or(S,S’), Text, H).

matches1(or(S,S’), Text, H) :-
matches1”(or(S,S’), Text, H).

% the two possibilities of the ’or’ branch
matches1’(or(S,S’), Text, H) :-

equal(susp(matches(S, Text), R, Flag),true),
hnf(true,H).

matches1”(or(S,S’), Text, H) :-
equal(susp(matches(S’, Text), R, Flag),true),
hnf(true,H).

Fig. 2. Generated Prolog Code

A goal like false && false returns false as expected, but unnecessarily repeats
the answer twice:

>false && false
false
more solutions? y
false
more solutions? y
no

Obviously the computation resulting in the second false was not needed and in
this case could have been avoided. The definitional tree shows why: the or branch
at the top of the tree means that the computations must try both alternatives.
In spite of this or branch the function will be recognized in our proposal (as
well as it was in [15]) as semantically deterministic, which means that if the first



(R1) false && Y = false
(R2) X && false = false
(R3) true && true = true

Fig. 3. The parallel and

alternative of the or succeeds the other branch either fails or provides a repeated
result. The dynamic cut will skip the second branch (under certain conditions) if
the first branch is successful, thus avoiding the waste of space and time required
by the second computation.

However, as noticed in [15], the cut cannot be performed in all computations.
For example, a goal like X && Y will return three different answers:

X==false ⇒ false
more solutions? y
Y==false ⇒ false
more solutions? y
X==true, Y==true ⇒ true
more solutions? y
no

That is, the result is true if both X and Y are true and false if either X==false or
Y==false. Here the second branch of the or node contributes to the answer by
instantiating variable Y and hence should not be avoided. Therefore the dynamic
cut must not be performed if the first successful computation binds any variable;
in this case the second computation can eventually instantiate the variables in
a different way, thus providing a different answer.

The situation complicates in a setting with non-deterministic functions. Consider
for instance the function definition:

maybe = true
maybe = false

and the goal true && maybe. In this case no variable is bound during the first
computation (the goal is ground) but the second computation is still necessary
due to the second value returned by maybe

true
more solutions? y
false
more solutions? y
no

Thus we shall extend the conditions for performing dynamic cuts, requiring not
only that no variable has been bound but also that no non-deterministic function
has been evaluated. As we will see, this introduces no serious overhead in the
implementation.



Example 2
The second example is based on the program of Figure 1, and shows the second
type of dynamic cut. The function part is again semantically deterministic but
will produce as many repeated results true as occurrences of X can be found.
The dynamic cut can be introduced after the conditional part of the rule, since
its re-evaluation cannot contribute to new results. Notice that in this case the
binding of U and V should not prevent the cut because they cannot contribute
to the final substitution σ. In contrast a binding of X or Y will take part of the
answer, avoiding the cut.

The effectiveness of the dynamic cut in part is still more noticeable because its
effect over the function matches. Assume that there is no dynamic cut, and that
we try a goal like

matches (or (and (single ”cut”) (single ”love”)) (single ”dynamic”))
”Efficiency has been one of the ...”

where the text used as second argument is actually the whole introduction of
this paper. Since the query is an or query, matches first tries the first alternative,
(and (single ”cut”) (single ”love”)). Although ”cut” is readily found there is no
”love” in our introduction and part fails in a first attempt, after examining the
whole text. Because of backtracking, a new occurrence of ”cut” is sought and
found (there are many occurrences of ”cut” in the text), and then again part
looks unsuccessfully for ”love”. The process repeats the examination of all the
text looking for any occurrence of ”love” as many times as occurrences of ”cut”
exist, therefore spending a huge amount of time before failing. Then the second
alternative of the or query succeeds since ”dynamic” appears in the text, and
the query finally returns true (many times). With dynamic cut, the computation
of the first alternative stops after the first fail of part ”love” ”...” and the query
readily returns only one true, as expected.

Example 3
This last example, presented in Figure 3, combines both kinds of dynamic cuts
presented above. Function palindrome detects when a string X is a palindrome,
word detects strings built only from letters, and palinWord indicates if its argu-
ment W is both a palindrome and a word. Thus palinWord ”refer” returns true,
while palinWord ”!!!” returns false repeated three times. In this case both the
or branch of the && function and the (possibly) repeated existential search in
palindrome contribute to decrease the efficiency of the program. Observe that
the use of the parallel and (&&) in this example cannot be easily replaced by
the usual sequential and:

and true Y = Y
and false Y = false

because this function requires the evaluation of the two boolean expressions, but
palindrome either returns true or fails without returning false. Therefore a goal
like palinWord ”123” would fail with the sequential and but returns false when
introducing the parallel and.



rev [ ] = [ ]
rev [X|Xs] = (rev Xs)+ + [X]

palindrome X = true <== Z ++ (rev Z) == X
palindrome X = true <== Z ++ [C] ++ (rev Z) == X

word [ ] = true
word [X|Xs] = (isLetter X) && (word Xs)

isLetter X = (ord(X)>=ord(’a’)) && (ord(X)<=ord(’z’))

palinWord W = palindrome W && word W

Fig. 4. Palindrome Words

Some of the previous examples involve functions, like part, matches or palin-
drome, that return true or fail. This corresponds closely to the logic programming
style. It could be argued that truly boolean functions returning true or false (in-
stead of failure) are preferable in practice, since in (standard) FLP one cannot
make computational use of failure; for instance, one cannot use the dicotomy
true/failure to distinguish cases in a definition. But sometimes the true-valued
version of a function is easier to define than the {true,false}-valued version; if the
false value for that function is not used in the program then the simpler version
is still useful. For instance consider the function part, defined in the program of
Figure 1 (rule (R3)) as

part X Y = true <==U ++ X ++ V == Y

This rule cannot be converted into a {true,false}-valued function simply replacing
the body true by the condition:

part’ X Y = U ++ X ++ V == Y

Indeed, a goal like part’ ”time” ”Once upon a time” will produce incorrect results:
false
more solutions? y
true ...

This is due to the presence of the extra variables U, V in the body of part’. In
the first answer the substitution {U 7→ [ ]} is obtained and the strict equality

[ ] ++ ”time” ++ V == ”Once upon a time”

returns false for any possible value of V, while in the second answer the substi-
tution {U 7→ ”Once upon a ”, V 7→ [ ]} leads to



”Once upon a ” ++ ”time” ++ [ ] == ”Once upon a time”

which yields the (correct) solution true. This, obviously, does not mean that part
cannot be transformed into a {true,false}-valued function. A possible definition
could be:

part’ [ ] [ ] = true
part’ [X|Xs] [ ] = false
part’ [X|Xs] [Y|Ys] = (prefix [X|Xs] [Y|Ys]) or (part’ [X|Xs] Ys)

with suitable definitions for functions prefix and or. Notice that this {true,false}-
valued version of part is also a semantically deterministic function. It is even
a non-ambiguous function in the sense of Def. 1 of next section, provided that
prefix and or are non-ambiguous, as they indeed should be if they are defined in
a natural way. Therefore, dynamic cut techniques could also be applied to this
case, avoiding the repeated answers if we define or using a ‘parallel’ definition
analogous to that of (&&). A similar discussion can be applied to the function
palindrome of Figure 3.

Furthermore, there are extensions of the FLP paradigm [18, 17] where failure
becomes a computationally useful construct, allowing in particular to ‘complete’
the true-valued version of a function with a default rule giving the value false.

4 Detecting Deterministic Functions

As we have seen, the deterministic nature of functions plays an important role
when determining if a dynamic cut can be performed, as was illustrated in the
examples above. We say that a function f ∈ FSn is (semantically) determinis-
tic if for all ground terms t1 . . . tn the goal f t1 . . . tn cannot produce different
data values. The functions ++, &&, part, matches,rev, palindrome, isLetter and
palinWord of Section 3 are all deterministic, while the function maybe is not.
Now we introduce an adaptation of the non-ambiguity conditions in [15], which
can serve as an easy mechanism for the effective recognition of deterministic
functions. Despite their simplicity, these conditions are enough in most practical
cases, in particular for the examples of Section 3.

Definition 1 (Non-ambiguous functions).
Let P be a program defining a set of functions G. We say that F ⊆ G is a set
of non-ambiguous functions if all f ∈ F verifies:

(i) If f(t) = e⇐ C is a defining rule for f , then var(e) ⊆ var(t) and all function
symbols in e belong to F (that is, extra variables and ambiguous functions
cannot occur in bodies).

(ii) For any pair of variants of defining rules for f , f(t)= e⇐ C, f(t′)= e′⇐ C ′,
one of the following two possibilities holds:
(a) Heads do not overlap, that is, f(t) and f(t′) are not unifiable.
(b) If θ is a mgu of f(t) and f(t′), then eθ ≡ e′θ.



The second part of the definition is equivalent to say that the set of unconditional
parts of defining rules for functions f ∈ F is a weakly orthogonal TRS [6].

Not all the deterministic functions are non-ambiguous. However, the non-ambi-
guity criterion is enough to ensure that the cuts will be safe. A finer character-
ization of semantically deterministic functions would increase both the number
of functions that can include dynamic cut and the number of cuts performed
during the computations.
Remarks:
- The definition above characterizes determinism of the set of functions F as a
whole. This is done so because the value of a function might depend on other
functions, and in general the dependence can be mutual. In practice, recognition
of deterministic functions can be done in a hierarchical way, by considering blocks
of functions (in most cases, blocks will be singletons) depending on themselves
or in other functions previously proved to be deterministic.
- Even if a function f , defined by a set of rules Rf , is non deterministic, it might
happen that a subset of Rf define a deterministic function. This allows us to
extend dynamic cuts to the deterministic subsets of non-deterministic functions.

- Notice that predicates defined in a pure logic program become non-ambiguous
functions if the usual translation is made, which converts a clause with the form
h :− b1, . . . , bn into the rule h = true⇐ b1 == true, . . . , bn == true.

Next we introduce two claims which establish the conditions for introducing
the dynamic cut safely. The claims are stated in a hopefully precise but informal
way, and they are also justified only at an informal level through some comments
following the claims, and through the examples of this section and the previous
one. A formal technical treatment of the issues discussed here is out of the scope
of this paper.
Claim 1

Let G be a goal, f a deterministic function and e an expression of the form
e ≡ f(e1, . . . , en). If a computation of a head normal form for e occurs during
the computation of G, and succeeds without:

(i) Binding any variable in e.
(ii) Computing a hnf for any expression g(e′1, . . . , e

′
m) where g is non-determi-

nistic.

Then any other alternative to the computation of this hnf for e can be discarded,
since it cannot contribute to produce a different answer for the original goal.

Remember that in our setting the answers for a goal are pairs of the form
(result, substitution). Condition (i) indicates that the substitution obtained for
subgoal e is the identity and therefore every possible re-evaluation will produce
a more particular substitution. The condition (ii) ensures that the computation
has been produced using only deterministic functions and therefore the expres-
sion e cannot produce a different result.



For instance, this claim justifies the introduction of the dynamic cut in the
case of the parallel && introduced as first example in Section 3.

Claim 2
Let G be a goal and e ≡ f(e1, . . . , en) an expression, such that the compu-

tation of a hnf of e occurs during the computation of G. Let f(t) = r⇐ C be
a defining rule for the (possibly non-deterministic) function f used to compute
such hnf. Then, if the condition C is successfully computed without:

(i) Binding any variable in e1, . . . , en, e.
(ii) Computing a hnf for any expression g(e′1, . . . , e

′
m) where g is non-determi-

nistic.

Then any alternative re-evaluation of C can be discarded, since it cannot con-
tribute to produce a different answer for the original goal.

Conditions (i) and (ii) are required for the same reasons given in Claim 1.
Examples of situations corresponding to Claim 2 have been given in the examples
2 (for the function part) and 3 (for the function palindrome) of Section 3.
However in both cases the involved functions were indeed deterministic. Figure
5 presents an additional example to illustrate the case with a non-deterministic
function. In this program f, and therefore g, are non-deterministic functions,
while h and p are deterministic.

f X = X p 0 0 = true
f X = X + 1 p 0 1 = true
g X = f X <== p X Y == true h 1 = 1

Fig. 5. Example for Claim 2

A goal like h (g 0) returns, without dynamic cut, the expected answer 1
repeated two times. The reason of this repetition is that solving h (g 0) requires
first to evaluate g 0 to hnf; and this requires to check the condition p 0 Y ==
true. The condition succeeds in a first alternative giving the binding Y/0, but
there is a second successful alternative for the condition giving the binding Y/1
which produces the second evaluation of g 0 to (the same) hnf and yields the
repeated answer 1. What claim 2 states is that, since Y is local to the condition,
this alternative can be pruned in case of future backtracking. Coming back to
the goal in the example, after checking the condition, f 0 must be evaluated. A
first obtained value is 0, which is then a first hnf for g 0. But 0 does not match
the term 1 of the rule for sf h, and then backtracking is required. A second
alternative for f 0 gives 0+1, which evaluates to 1. This matches the rule for h
and we finally obtain the expected value 1. Notice the importance of cutting just
after checking the condition, and not at the end of the application of the rule.



The latter would have pruned the use of the second rule for f when evaluating f
0, and therefore we would have missed the expected answer.

Notice that the condition (ii) in both claims 1 and 2 avoids the introduction
of dynamic cuts even if the evaluation of a non-deterministic function has no
influence over the answer obtained for e. The program in Figure 6 exemplifies
why this condition is not too restrictive.

incNat X = X + 1 <== natural X
natural X = true <== X>=0
zeroOrOne = 0
zeroOrOne = 1

Fig. 6. Example for Claim 2

In this program function zeroOrOne is non-deterministic while both incNat
and natural are deterministic.

In principle we could think that, when computing a hnf for an expression
e ≡ natural e′, the function natural could safely cut if no binding of variables is
produced during the evaluation of its condition X >= 0, because regardless of
whether some non-deterministic function has been evaluated or not, the function
natural is going to produce true as result if the condition has been successfully
solved. But we must remember that the computation of e can be a subcomputa-
tion of some initial goal, and therefore the evaluation of its condition can have
some ’long distance’ effects due to the mechanism of suspensions and sharing,
as the following example shows.

Consider for instance the goal incNat zeroOrOne. The expected answers are
1 and 2 since the two values produces by zeroOrOne are natural numbers. To
obtain these results, incNat must evaluate its condition natural X which in this
computation would be natural zeroOrOne. Now function natural has itself a condi-
tion which will be zeroOrOne >= 0. To solve the condition the non-deterministic
function zeroOrOne is evaluated first to 0, which satisfies the condition and pro-
duces the first result 1 for the goal (obtained by evaluating the right-hand side
0 + 1 of incNat). In a similar way, by re-evaluating the condition of incNat the
condition of natural will be in turn re-evaluated and the second value 2 will be
produced.

But if natural had introduced a cut after the first evaluation of its condition
it would have avoid the re-evaluation of zeroOrOne and therefore the second
answer for the goal would have been missed.

Although following claims 1 and 2 we could safely introduce dynamic cut as-
sociated to many evaluations of hnf, most of these cuts would be unnecessary.
Instead, we will include code for dynamic cut only in the two situations presented



in the examples of Section 3 and described precisely in the code generation of
the next section.

5 A Prolog Implementation of Dynamic Cut

In this section we explain how to accommodate dynamic cut into the translation
scheme T OY → Prolog described in Section 2.2. We think that it is not difficult
to extend the approach to other translation schemes, as far as they use Prolog’s
depth first search and backtracking. But it is not so clear how to include in an
effective way dynamic cut in an operationally complete implementation where
choices are evaluated in parallel.

Coming back to the scheme of Section 2.2, only the third phase of the trans-
lation, the code generation, is modified to introduce the dynamic cuts.

For this modification we will use a pair of auxiliary predicates:
• varlist(E,Vs), which returns in Vs the list of variables occurring in E, taking
into account the following criterion for collecting variables inside suspensions:
(1) If E contains an unevaluated suspension susp(f(e1, . . . , en), R, S) and f is a
non-deterministic function then R must be added to Vs. This is directly related
to part (ii) of Claims 1 and 2, and it is essential for performing dynamic cut
safely, as shown in the examples above.
(2) If E contains an evaluated suspension susp(f(e1, . . . , en), R, S), then we pro-
ceed recursively collecting variables in R.
• checkvarlist(Vs), which checks that all elements in Vs are indeed different
variables. This ensures that no variable in Vs was bound during the evaluation
of E.
The combination of varlist and checkvarlist in a code sequence like

varlist(E,Vs), <compute something with E >, checkvarlist(Vs)

is an easy way of controlling that no variables in E have been bound during the
computation. In many practical cases Vs will be empty, and then checkvarlist(Vs)
is a trivial test. The actual implementation of varlist and checkvarlist is straight-
forward and can be found at http://babel.dacya.ucm.es/rafa/cut.
As we did in section 2.2, we distinguish cases according to the shape of the root
of the definitional tree dt of a given function f :
Case 1 (the root is a case node):

Assume dt ≡ f(s)→ case X of 〈c1 : dt1 . . . cm : dtm〉
In this case different branches correspond to incompatible cases in a given posi-
tion, and therefore there is nothing to prune. The generated code in this case is
the same as if dynamic cut is not taken into account:

prolog(g, dt) = { g(s,H) :- hnf(X,HX), g’(sσ,H).} ∪
prolog(g′, dt1) . . . ∪ prolog(g′, dtm)

where σ = X/HX and g’ is a new function symbol.
Case 2 (the root is an or node):



Assume dt ≡ f(s)→ or 〈dt1 | . . . | dtm〉
In this case, some of the (head of) rules in different branches might overlap,
maybe yielding to different computations with the same result. Code for dy-
namic cut at the root can be useful, but it is safe only in case that the function
defined by the tree is deterministic; otherwise, different branches, even overlap-
ping, might produce different results and none of which should be pruned. To
be precise: let R be the set of program rules in the leaves of dt. We consider two
cases:

Case 2.1 If R defines a non-deterministic function, then code for dynamic cut
cannot be added, and the code generated is the same we described in section
2.2:

prolog(g, dt) = { g(s,H) :- g1(s,H).} ∪ . . .∪ { g(s,H) :- gm(s,H).} ∪
prolog(g1, dt1) ∪ . . . ∪ prolog(gm, dtm)

where g1, . . . , gm are new function symbols.
Case 2.2 If R defines a deterministic function, then we add code for dynamic
cut by adding a new auxiliary predicate gaux:

prolog(g, dt) = { g(s,H) :- varlist(s,Vs),
gaux(s,H),
(checkvarlist(Vs),
! % this is the dynamic cut
;
true). } ∪

{gaux(s,H) :- g1(s,H).} ∪ . . . ∪ {gaux(s,H) :- gm(s,H).} ∪
prolog(g1, dt1) ∪ . . . ∪ prolog(gm, dtm)

where gaux, g1, . . . , gm are new function symbols. Observe that gaux is defined
as g in the case 2.1, that is, as g would be defined without dynamic cut. The
behavior of the clause for g is then clear: we collect the relevant variables of the
call, and use gaux to do the reduction; if after succeeding no relevant variable
has been bound, we cut to prune other (useless) alternatives for gaux.

The cut here is safe because we are in the conditions of the claim 1 of section 4:
no variable have been bound and no non-deterministic function has been used
because it would have modified its suspension variable, and checkvarlist would
have failed.

We remark that, according to Prolog standard [10], the occurrence of ! in the
clause for g above is indeed visible in the clause, and has therefore the desired
effect.
Notice also that the condition required to add code for dynamic cut is local to
the tree: only the rules in the tree are taken into account. This allows a ‘fine
tuning’ of dynamic cut, which can be added to ‘deterministic parts’ of a function
definition, even if the function is non-deterministic.
Case 3 (the tree is a leaf try):



Assume dt ≡ try R, where R is a program rule

f(s) = e⇐ l1 == r1, . . . , ln == rn

In this case it is always possible to add code for dynamic cut between the code
for the conditions and the code for the body e. Some care must be taken with the
variables in the conditions not occurring in the head f(s). If any of these extra
variables does not occur in the body e, then it is an existential variable, whose
only role is to witness the condition. The relevant fact is that if the conditions
succeed with some bindings for existential variables, there is no need of finding
alternative bindings for such variables. But if one extra variable of the conditions
occurs also in e, it might contribute to its value, and therefore to the value of
f(s); this means that bindings for such variables must inhibit the dynamic cut.
To take this into account is quite easy: just add the variables in e to the list of
variables relevant for dynamic cut.

prolog(g, dt) ={ g0(s,H) :- varlist((s, e),Vs), % notice the body e
equal(l1,r1), . . . , equal(ln, rn),
(checkvarlist(Vs),
! % this is the dynamic cut
; true),
hnf(e,H). }

In this case the cut fulfills the conditions of the claim 2 of section 4. We remark
that this code is correct even if the body e is non-deterministic, because the
cut is placed before evaluating the body, which implies that we only cut the
re-evaluation of the conditional part of the rule.

5.1 Examples

Here we present a few examples of translations into Prolog following the ideas
commented above. The complete generated code for the examples can be found
at

http://babel.dacya.ucm.es/rafa/cut

It is worth noticing that the code found there is not exactly the code described
in the paper: apart from typical optimizations, as the real code is going to be
executed within T OY, it must take into account disequality constraints [5, 1],
which are embedded in the system.
Parallel and Since the function && is deterministic and has an or node at
the root of its definitional tree, dynamic cut code is added for it. Since the rules
are unconditional, try nodes do not require dynamic cut. The Prolog code for
&& is then:



&&(X,Y,H) :-
varlist((X,Y),Vs),
&&aux(X,Y,H),
(checkvarlist(Vs),
! % this is the dynamic cut
; true).

. . . . . .

where the auxiliary predicate &&aux is defined exactly as would be && without
the dynamic cut.

Simple queries In this example, the functions part and matches accept dy-
namic cut, the first because its rule has a condition with existential variables,
and the second because it is deterministic and has an or node in its definitional
tree.

The code for part including dynamic cut is:

part(X,Y,H) :-
varlist((X,Y),Vs),
equal(susp(++(U,susp(++(X,V),R,S)),R’,S’), Y),
(checkvarlist(Vs),
! % dynamic cut after the conditions
; true),
hnf(true,H).

The code for match is now:

matches(X, Text, H) :-
hnf(X, HX),
matches1(HX, Text, H).

% the three possibilities of the ’case’ branch
matches1(single(S), Text, H) :-

equal(susp(part(S, Text), R, Flag),true)
hnf(true,H).

matches1(and(S, S’), Text, H) :-
equal(susp(matches(S, Text), R1, Flag1),true),
equal(susp(matches(S’, Text), R2, Flag2),true),
hnf(true,H).

matches1(or(S,S’), Text, H) :-
varlist(or(S,S’),Vs),
matchesaux(or(S,S’), Text, H).
(checkvarlist(Vs),
! % this is the dynamic cut
;
true).

matchesaux(or(S,S’), Text, H) :-
matches1’(or(S,S’), Text, H).



matchesaux(or(S,S’), Text, H) :-
matches1”(or(S,S’), Text, H).

% the two possibilities of the ’or’ branch
matches1’(or(S,S’), Text, H) :-

equal(susp(matches(S, Text), R, Flag),true),
hnf(true,H).

matches1”(or(S,S’), Text, H) :-
equal(susp(matches(S’, Text), R, Flag),true),
hnf(true,H).

Notice that the only differences between this code and the version without
dynamic cut presented in section 2.2 are the renaming of the third clause of
matches1 to matchesaux and the introduction of the clause with the dynamic
cut.

6 Experimental results

Fig. 7 presents some experimental results obtained with the system T OY3. In
addition to the examples of Section 3 we have used two examples:
- graph.toy: This program defines a graph with the shape of a grid, where each
node is connected to its nearest right and down nodes. Also, a function to check
whether two nodes are connected is defined. The natural coding of this function
includes an existential condition in a program rule that will include code for the
dynamic cut.
- composite.toy: Program to check whether a number is composite, i.e. not prime.
This is achieved by looking for two numbers whose product is the desired number,
and this, again, is naturally represented in FLP languages by an existential search
in the condition of a program rule. The dynamic cut will stop the computations
after the first decomposition is found if the number is not prime.
In the following we describe briefly each goal.
- G1 is false && (false && ( .... (false && false) . . . )) == true with 100000 false
values.

- G2 is ( . . . ((false && false) && false ) && . . . ) && false == true with 5000
false values. In contrast to G1, in this case dynamic cut is not really effective,
and the code including cut is indeed slightly worse due to the run-time checking
of bindings. This behaviour is due to the order of rules (of &&) and evaluation,
because in G1 the ‘expensive’ branch (which evaluates the secons conjunct (false
&& ( .... (false && false) . . . )) to obtain false) is pruned, while in G2 what is
pruned is the ‘cheap’ one (which evaluates false to obtain false).

- G3 is matches (or (and (single ”cut”) (single ”love”)) (single ”dynamic”)) intro
where intro represents the text of the introduction of this paper.

- G4 is matches (and (and (single ”is”) (single ”this”)) (single ”love?”)) intro.
3 Running on a PC under O.S. Linux with processor Intel Celeron at 600 MHZ and

128 Mb RAM.



Without With
Program Goal Dynamic Cut Dynamic Cut

example1.toy G1 3.4 sec. 0 sec.
example1.toy G2 105.2 sec. 119.8 sec.
example2.toy G3 30.7 sec. 2.5 sec.
example2.toy G4 327.3 sec. 2.3 sec.
example2.toy G5 >5 hours 2.0 sec.
example3.toy G6 33.5 sec. 4.8 sec.
graph.toy G7 64.2 sec. 0 sec.
graph.toy G8 >5 hours 0 sec.
graph.toy G9 >5 hours 0.1 sec.
graph.toy G10 66.7 sec. 70.6 sec.
composite.toy G11 151.0 sec. 0.4 sec.
composite.toy G12 >5 hours 4.0 sec.
example1.toy G13 loops 0 sec.

Fig. 7. Runtime Table

- G5 is matches (and (and (single ”is”) (single ”a”)) (single ”love”)). In this ex-
ample notice that the goal fails due to the lack of ”love” in the introduction, but
both ”a” and ”is” occur many times in the text and therefore the search space
is really huge.

- G6 is palinWord ”11...11” with ”11..11” representing the string with 200 repe-
titions of digit 1 (which is obviously a palindrome but not a word).

In the rest of the examples the goals have been forced to fail in order to check
the time required to examine the whole search space. This is not as artificial as
it could seem; on the contrary it happens whenever the goal is evaluated as part
of a subcomputation that finally fails.
- G7 looks for a path between the upper-left and the lower-right corner of a
grid of 10×10 nodes. Without dynamic cut the backtracking will try all possible
paths in the graph, but the dynamic cut stops after finding the first successful
path. G8 and G9 are analogous to the previous goal but for grids of 20×20 and
100×100, respectively.

- G10 looks for paths from the upper-left corner to a generic node represented
as a variable N . In this case the cut takes no effect because variable N is bound
during the computations and cutting would not be safe, and the times with and
without dynamic cut are similar.

- G11 checks if number 1000 is not prime, while G12 is analogous but for number
10000.



- G13. In addition to these examples it is easy to find goals where dynamic cut
avoids non-termination. For instances G13 ≡ false && loop == true, where loop
is defined as loop = loop, fails with dynamic cut while loops without it.

7 Conclusions

This paper presents a mechanism of dynamic cut for lazy FLP programs that can
be easily introduced in a Prolog-based implementation. The technique requires
a static analysis of determinism and the modification of the segment of the gen-
erated code where the cut is feasible (deterministic functions with or branches
and rules with existential conditions).
By including dynamic cuts, the efficiency of several computations both in terms
of time and space is improved, often dramatically. This is done by avoiding redun-
dant non-deterministic computations related to the evaluation of semantically
deterministic functions. In contrast to Prolog cuts, the dynamic cut proposed
here is transparent to the programmer (since it is automatically introduced by
the system in the generated code) and it is safe.

The second consequence of the cut is that many repeated answers can be avoided.
Also non-terminating computations become, in some cases, terminating. How-
ever, dynamic cut does not change the set of computed answers.

Because of these two benefits, functions that are usually avoided in FLP, like
the parallel and presented in Figure 3, can now be used without decreasing the
efficiency of the computations.

Compared to a previous work ([15]) on this subject our proposal presents three
major improvements:
• Non-deterministic functions are considered.
• The introduction of the dynamic cut is related to definitional trees allowing
the integration of the technique into current systems based on demand driven
strategies.
• We show how to incorporate the technique in systems that generate code by
transforming FLP programs into Prolog-code. This, together with the two previ-
ous points, makes the technique fully applicable to several FLP implementations.

In principle the techniques discussed in this paper can be applied to pure logic
program, since any pure logic program is non-ambiguous in the sense of definition
1. However, including dynamic cuts could produce undesirable effects in the real
practice of logic languages such as Prolog, where many non-logical features are
used. Consider for instance the usual definition of repeat, a predicate commonly
used in Prolog to implement a failure loop to be combined with side-effects:

repeat.
repeat :- repeat.

With dynamic cut the second clause of repeat would never be used, thus convert-
ing repeat into a useless predicate. We think that this kind of problems explains



why other theoretical proposals in the field of logic programming [9, 8] are not
usually implemented in real logic systems.
As future work, we plan to fully integrate the optimization in the system T OY
and to improve the implementation of the mechanism used to detect whether a
relevant variable has been bound. The present proposal has proved to be effec-
tive, but it is rather naive, since it requires complete traversals of expressions
and lists of variables. In a different line, a deeper theoretical work would be de-
sirable which would both extend the class of functions qualified as deterministic
and provide an operational framework suitable to prove the properties of the
technique.
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