Extensions:

A technique for structuring functional-logic programs
(Regular Talk)

Rafael Caballero-Roldan, Francisco J. Lépez-Fraguas *

Departamento de Sistemas Informdticos y Programacién
Universidad Complutense de Madrid, {rafa,fraguas}@sip.ucm.es

1 Introduction

Functional-Logic programming, FLP in short, aims to integrate of functional and logic programming,
allowing the use of techniques from both paradigms into the same declarative framework (see [Han94]
for a survey). Moreover, the combination of ideas of the two worlds gives rise to new features specific to
FLP. This work should be seen as a contribution in this direction, for it presents a new technique, the
extensions, that can be used as an alternative to the functional technique of monads when programming
in a functional-logic language.

The concept of monad comes from category theory, and it has been widely used in functional
programming to structure functions, pointing out the essence of the algorithms represented while
concealing the data flow and the associated computations [Wad90,Wad92,Wad95].

In several FLP frameworks such as Escher [Ll095], Curry [Han98] or our working language,
TOY [CLS97], monads can be used directly, yielding the same benefits as in the case of functional
programming. However, FLP has a wider range of programming mechanisms, including logical vari-
ables, and it should be questioned whether it is possible to define a specific FLP technique to address
the same kind of problems from a different point of view. In the rest of the paper we describe such
an alternative, the FLP extensions. Although lacking the theoretical background and wide range of
applications of monads, extensions present some specific advantages, such as:
¢ Extensions can replace monads in several different situations, allowing the same expressiveness but
using much simpler concepts.

e Multiple modes of use are allowed by extensions, which is not so easy to achieve when defining
monads in an FLP context.

e In the case of adding new features to functions, monads enforce the evaluation of both the old
and the new values simultaneously. Conversely, extensions can use the new feature only where it is
required, thus avoiding unnecessary computations.

2 The FLP framework: A succinct description of 7TOY

All the programs in the next sections are written in the purely declarative functional-logic language
T OY, which is a concrete realization of CRWL, a theoretical framework for declarative programming
(see [GH+96]). We present here only the subset of the language relevant to this work. A more complete
description and a number of representative examples can be found in [CLS97].

A TOY program consists of datatype, type alias, infix operator definitions, and rules for defining
functions. Syntax is mostly borrowed from Haskell [HAS97], with the remarkable exception that
variables begin with upper-case letters whereas constructor and function symbols use lower-case.

Our first example of a program written in 7)Y may be seen in figure 1. This program is the
TOY version of the evaluator for simple expressions presented by P. Wadler in his article [Wad95],
and will be our starting point in order to compare monads and extensions. The evaluator itself is

* Work partially supported by the Spanish CICYT (project TIC98-0445-C03-02 ” TREND”) and the ESPRIT
Working Group 22457 (CCL-II).

infixr 20 :/:
data expr = val real | expr :/:expr

eval:: expr — real
eval (val A) = A
eval (A :/:B) = (eval A)/(eval B)

Fig. 1. Monadic variations of the basic evaluator

represented by function eval, which takes an expression F as the only input parameter, and returns
the real number resulting from evaluating E. An expression can be either a real number r, represented
as val r or a quotient between expressions e; and e, represented as ej :/: es.

In general, each function £ in 7OY is defined by a set of conditional rules of the form
ft1 ...t, = e < e; == 6'1, ., Ef == e;c

where (t1...t,) forms a tuple of linear (i.e. with no repeated variable) constructor terms, and e, e;, e}
are expressions. No other conditions (except well-typedness) are imposed to function definitions. Rules
have a conditional reading: £ ¢:...t, can be reduced to e if all the conditions e; ==¢€f,...,ex == €},
are satisfied. The condition part is omitted if £ = 0 (as in our previous example eval). The symbol
== gtands for strict equality, which is the suitable notion for equality when non-strict functions are
considered. With this notion a condition e == e’ can be read as: e and e’ can be reduced to the same
constructor term.

TOY can introduce non-deterministic computations by different means, but we only need one of
them for this discussion, namely the occurrence of extra variables in the right side of the rules like in
z 1list = [0|L]. Although in this case z_list reduces only to [0[L], the free variable L can be later on
instantiated to any list. Therefore, any list of integers is a possible value of z_1ist.

Computing in 7 OY means solving goals, which take the form e; == e}, ..., er == €}, giving as
its result a substitution for the variables in the goal making it true. Evaluation of expressions (required
for solving the conditions) is done by a variant of lazy narrowing based on a sophisticated strategy,
called demand driven strategy which uses the so-called definitional trees [Ant92] to guide unification
with patterns in left-hand sides of rules (see [LLR93]). For instance, using the evaluator defined above
we may try the goal: eval (val 16 :/:val 4 :/:val 1 :/:val 8) == R which yields R == 0.5.

As an aside, we remark that the current version of our language does not incorporate lambda
abstractions or let constructions. However, these syntactic facilities are usual in the functional pro-
gramming literature, and we have included them in some of our examples in order to fairly represent
the monadic approach. For testing the examples in the actual implementation, we have simply needed
to ‘lift’ such constructions using well-known techniques [Pey87].

3 Funcional-Logic monads

In this section we present two variations of the basic evaluator, following the lines of Wadler’s paper
[Wad95]. We also recall briefly some of the basic concepts concerned with monads, which will be useful
when comparing monads and extensions. However, we will not delay very much at this point, assuming
that the definition and usefulness of monads are well-known, and referring to the cited article for a
deeper discussion of these issues.

To convert a function f::A — B to monadic form we change its type to f::A — m B, meaning that
function faccepts a parameter of type A and returns a value of type B, with an associated computation
represented by m. The structure of the function will be based on the functions unit:: A — m A (also
known as result) and (*)::m A — (A - m B) — m B (usually called bind) and indicates how the
value B is constructed, avoiding any explicit reference to the computation m. Only unit and * (and

perhaps some auxiliary functions) will ‘know’ what m is actually, and how to deal with it. If we want
to add some extra capabilities to the original code of flater, we only need to look for an appropriate
data constructor m’ that captures the essence of the modification. Then we redefine the type of the
function to f::A — m’ B, define the new versions of * and unit and, perhaps, make a few local changes
in the code of the function itself, but always keeping the same basic structure.

Figure 2 shows two ‘classical’ variations of the original evaluator.

type state = int type output = string

type m A = state — (A,state) type m A = (output,A)

unit:: A - m A unit:: A - m A

unit A X = (4,X) unit A = ("",A)

infixr 30 * infixr 30 *

(*)::m A —> (A —>mB) > mB (*):tmA > (A > mB) - mB

(*) MK S = 1let (A,S2) =M S in K A S2|(X,A) * K = let (Y,B) = K A in (X++Y,B)

tick :: m () out::output — m ()

tick X = (0 ,X+1) out X = (X,(Q))

eval:: expr — m real eval:: expr — m real

eval (val A) = unit A eval (val A) = out(line(val A) A)

* A().unit A

eval (A :/:B) = eval (A :/:B) =
eval A * AR1. eval B * AR2. eval A * AR1. eval B * AR2.
tick * A(). unit (R1/R2) out (line (A :/:B) (R1/R2))

* \().unit (R1/R2)

Fig. 2. Monadic variations of the basic evaluator

The first variation is based on the very useful state monad , which is used in this case to count the
total number of divisions performed while evaluating the expression. The second variation produces
a trace of the evaluation. This last variation uses a function line which produces a step of the trace
and may be defined as: 1ine T R = "eval(" ++showterm T ++")<&= " ++number_to_string R++"\n" as-
suming suitable definitions for showterm and number_to_string. The infix operator ++ is the standard
function for concatenation of lists. It can be seen that the basic structure of eval is kept almost
unaffected. If we had modified the initial code directly, this would have been more difficult to achieve.

4 FLP extensions

In the previous section we have sketched how the monadic approach can be adopted in 7TO)Y. Now it
is time to present the alternative provided by our FLP extensions.

4.1 An informal introduction to extensions

The idea of FLP extensions is quite simple, and constitutes itself a good example of mixing the
resources of logic and functional programming;:

Suppose we would like to add a new capability of type C to a given function f::A — B. Then, all
we need to do is to extend the type of the function to f::A — B — C, meaning that the old returned
value is now an output parameter, while the new value is introduced as the result of the function.

Consider the initial basic evaluator and suppose we want to enrich the capabilities of the function
eval::expr — real by associating a new value of type C to the currently returned real number.
Then, we extend the function with the new feature, changing its type to eval::expr — real — C. Of
course the definition of eval also needs to be modified, acknowledging that the result of the evaluation
is no longer the result of the function, but an output parameter.

In order to hide the way the values of type C are composed we define a combinator (*)::C — C
— C. Hence the second rule for eval will have the shape eval (A :/:B) R = eval A R1 * eval B R2

. with the values R, R1, R2 standing for the result of the evaluation of A :/:B, A and B respectively.
The problem of constructing the new result of the function seems to be solved: eval A R1 and eval
B R1 are actual values of type C related to the ‘old’ values R1 and R2, and therefore can be combined
by using *. If later we change C by ¢’ we only need to change the definition of * but not the basic
structure of eval.

However, we still need to associate the value R1/R2 with the result of the evaluation R. This will be
performed by function unit, which must ‘identify’ R and R1/R2. In order to generalize the definition to
other situations, both values R and R1/R2 will be input parameters of unit. The logical way of adding
unit to the definition of eval is simply by using *:

eval (A :/:B) R = eval A Rl * eval B R2 * unit (R1/R2) R

This means that unit should return a value of type C and, since we said above that the result of the
functions was already properly constructed by eval A R1 * eval B R2 , the value of unit must be a
truly unit value with respect to the operation *. Therefore given a unit element e of type C, we can
define unit as

unit::real — real — C

unit A A = e
where the repeated variable is just a ‘syntactic sugar’ of unit A B = e <= A==B. That is, unit returns
e if the strict equality A==B succeeds. This produces the desired identification between the result R and
R1/R2.

4.2 Extensions of the basic evaluator

The ‘extension counterpart’ of the monadic variations presented in the previous section may be seen
in figure 3. The type € of our discussion is represented respectively by the types trans and output,
while the unit elements are id and " ", where the standard function id is defined as usual: id X = X .
Further details about these examples may be found in section 5.

type state = int

type trans = state — state type output = string
unit:: A - A — trans unit:: A — A — output
unit A A = id unit A A = ""

infixr 30 *
(*) ::output — output — output

infixr 30 *
(*)::trans — trans — trans

() MK S =K S2 <= MS == 82

tick :: trans
tick = (1+)

eval:: expr — real — trans
eval (val A) R = unit A R

eval (A :/:B) R =
eval A R1 * eval B R2 *
unit (R1/R2) R * tick

M*K=M4+ K

out::output
out = id

eval:: expr — real — output
eval (val A) R = unit A R *
out (line (val A) A)
eval (A :/:B) R =
eval A R1 * eval B R2 *
unit (R1 / R2) R *
out (line (A :/:B) R)

Fig. 3. Extensions of the basic evaluator

4.3 Definition of extension

A FLP extension is a tuple (b, unit, *) where b is an specific type, unit is a function of type 4 — A
— b and definition unit A A = ¢, e € b, and where *is a function of type b — b — b such as (e, *)
is a monoid.

Now it can be proved easily that the variations of figure 3 are actually extensions. For example, the
pair (“”,4++) used in the output extension is known to satisfy the properties of monoids. The proof
for the other case is quite straightforward. Although this definitions lacks the theoretic background of
the definition of monad, the structure of monoid is enough to prove some simple assertions about the
functions defined using * and unit in the same line as that of [Wad95].

5 A comparative survey

So far we have presented two ‘classical’ variations of the basic evaluator, using both extensions and
monads. Now we can present a first comparative study of the two techniques. In the following points
we show some of the advantages of using extensions that can be checked directly in the examples.

e The definitions of types for extensions are simpler than in the case of monads. Indeed, we do not need
to worry about how to combine the old and the new value, while monads need to define a suitable type
constructor m. For example, in order to add the output trace to the basic evaluator, we have defined
the type type output = string while the monadic version needs also definem A = (A, output).
e As a consequence of the previous point, functions unit and * admit simpler definitions. For instance
(#):: output — output — output
M *x K=M ++K
indicates that the result of combining two outputs is the concatenation of both of them. Observe, in
particular, the symmetrical aspect of the type of (*). This definition seems more readable than the
monadic variation:
(*):: mA —> (A —>mB) > mB
(X,A) * K = let (Y,B) = K A in (X++Y,B)
e The symmetrical definition of * also entails some practical consequences, as it allows the programmer
to change the order of the combined values. Thus we do not need to end the sequence with a unit
expression, as in the case of monads. For instance, take the second rule for eval in the output monad:

eval (A :/:B) =eval A * AR1. eval B * AR2. out (line (A :/:B) (R1/R2)) * A(). unit (R1/R2)

It would better to change the order of unit and out, writing instead
eval (A :/:B) =eval A * AR1. eval B * AR2. unit (R1/R2) *AR. out (line (A :/:B) R)

avoiding the unnecessary repeated calculation of R1/R2 and separating the side effect from the main
computation, but this is not possible without changing the definition of out. However the definition
of * for extensions allows us to write

eval (A :/:B) R =eval A Rl * eval B R2 * unit (R1/R2) R * out (line (A :/:B) R)

where R1/R2 is computed only once.

e The separation between the old and the new values also benefits the definitions of auxiliary functions
such as tick or out. For example, as tick must increase the state we need only write tick = (1+)
instead of the monadic definition tick X = ((),X+1). These straightforward definitions also avoid the
useless dummy variables and values () that appear in the monadic definitions.

Of course, extensions have some disadvantages like any other programming technique. We can
point out the following drawbacks:
¢ Monads are a more abstract technique. They are based upon deep theoretical results and can be
applied to a number of different areas beyond programming, such as type inference or semantics, while
extensions are hitherto just a specific methodology of FLP.
e Some monads cannot be thought of in terms of extensions, because they are not meant to add new
values to a previously given function. For instance, lists may be seen as a monad (see [Wad95]), while
they cannot be defined in terms of extensions.

Therefore, extensions cannot be applied to the same situations as monads. And, can monads
substitute extensions? In Section 6 we will present some applications of extensions that cannot be
accomplished by monads, hence showing that neither of both techniques may be subsumed into the
other one.

6 Other features of extensions

Extensions and monads look quite similar, but actually they can be used to solve different problems.
We have pointed out in Section 5 some limitations of extensions. Now we are going to show how
extensions can be used in two situations where monads cannot be readily applied.

6.1 Avoiding unnecessary computations

Monads (as well as extensions) allow one to increase the capabilities of functions while keeping their
basic structures unaffected. Of course, these extra features also entail extra computation time. The
efficiency of the two techniques is quite similar (both in time and space) when the extra features are
computed. However the situation changes remarkably in the points of the program where still only
the old value of the function is required. This may be specially extreme when dealing with the state
monad (or extension).

Imagine for example that we need a variation of the evaluator of expressions that not only computes
the resulting real number but also maintains an ordered list with the numbers that appear in the
expression. Such variation may be seen in figure 4 using monads and extensions

type state = [reall type state = [reall

tick :: real - m () tick :: real — trans

tick AS = ((), insert A S) tick A = insert A

eval:: expr — m real eval:: expr — real — trans

eval (val A) = tick A * A().unit A |eval (val A) R = tick A * unit A R
eval (A :/:B) = eval A * ARl.eval B |eval (A :/:B) R = eval A R1 * eval B R2
* AR2. unit (R1/R2) * unit (R1/R2) R

Fig. 4. Evaluator yielding an ordered list, using monads (left) and extensions (right)

with the function insert defined as usual. Functions #, unit and types m A and trans have not been
included for they are those of the state variations we showed before (figures 2 and 3). Here function
tick is used to insert an element in the ordered list, while the initial state is the empty list. For
example, using extensions we may try eval (val 8 :/:val 4 :/:val 2) R [] == L which returns the
valuesR == 4and L == [2, 4, 8] However, it is possible that we might still need to evaluate expressions
just to get the result, dismissing the list. In this case, the insertion of all the elements in the list is
an unnecessary overweight that should be avoided. Using extensions this can be done by simply not
providing the initial state [] to the goal. Then the result of evaluating the expression is computed as
usual, but the state is returned as a ’chain of actions’ not evaluated yet, as is witnessed by the goal
eval (val 8 :/:val 4 :/:val 2) R ==L that returns
% == (insert 8 * id) * ((insert 4 * id) * (insert 2 * id) * id) * id

Thus the actual insertion in the list is not carried out, and we can define a function eval’ aseval’ Expr
= R <= eval Expr R == _ . Note that this cannot be done by using monads, because the two values,
the numeric result and the list are actually parts of a single value. Effectively, if we do not provide
the initial state to the monadic variation, a goal like eval (val 8 :/:val 4) == L yields an expression
of the shape L. == (tick 8 * A().unit 8) * AR1l.(tick 4 * A().unit 4) * AR2.unit(R1/R2) because

functions tick, unit and * cannot be reduced until a initial state is provided. Thus we can either
compute both the result and the ordered list, or neither.

The use of the function eval’ whenever the list is not required can speed up the program con-
siderably. Checked with a expression of 300 numbers, we have found out that the differences of time
between eval’ and eval using extensions, can vary from 0'38s to 5'10s. And, despite the big chain of
insert and id functions that eval’ must construct, the space required is also less than in the case of
actually performing the insertions with eval.

6.2 A parser for free

Consider the boolean expressions defined as
infixr 20 : /\:
infixr 15 :\/:
data expr = val bool | expr :/\: expr | expr :\/: expr
Suppose that we decide to define a evaluator evalb for this expressions, returning not only the
result of the evaluation, but also a suitable representation of the expression. The code for such function

may be seen in the figure 5, using monads (left side) and using extensions (right side), and is a simple
application of the output feature presented before.

evalb:: expr — m bool evalb:: expr — bool — output
evalb (val A) = out (conv A) * X\ _. unit Alevalb (val A) R = out (conv A) * unit A R
evalb (A :\/: B) = evalb (A :\/: B) R =

out "(" * A(). evalb A * out "(" * evalb A R1 *

ARL. out " or " * A(). out " or " *

evalb B * AR2. out ")'" * evalb B R2 *

AQO . unit (R1 ‘or‘ R2) unit (R1 ‘or‘ R2) R * out ")"
evalb (A : /\: B) = evalb (A :/\:B) R =

out "(" * A(). evalb A * out "(" * evalb A R1 *

A RL. out " and " * A(). out " and " *

evalb B * AR2. out ")" * evalb B R2 *

AQ). unit (R1 ‘and‘ R2) unit (R1 ‘and‘ R2) R * out ")"

Fig. 5. Boolean evaluator with output, using monads and extensions

Functions or and and are defined as usual in functional programming, while function conv may be
easily defined as conv true = "T" and conv false = "F" For example, using the monadic variation,
we may try evalb (val true :/\: (val false :\/: val true)) == R which returns R == ("(T and
(F or T))" , true). Suppose now that, after evaluating a few expressions using the new variation, we
decide that representations like "(T and (F or T))" are definitely nicer and more readable than evalb
(val true : /\ : (val false : \/ : val true)), and that we would like to define a version of evalb
accepting strings representing expressions as input parameter. Does it mean that now we need to
define a parser for boolean expressions? The answer is no, if we use extensions. Indeed, the extension
of the boolean evaluator showed in the figure 5 can be used as a parser without making any changes,

as witnessed by the goal evalb Expr R == "(F and (F or T))" which succeeds with
Expr == val false :/\: (val false :\/: val true)
R == false

This nice outcome of extensions is an example of the generate & test techniques, very usual in logic
programming. Therefore, ours is actually a recursive top-down parser of the grammar rules expressed
in evalb by means of output (for terminals) and recursive calls of evalb (for non-terminals).

But, why is it not possible to use the monadic variation in this case? It is due to the combination
of the string representation and the output value, which is a free variable. For example, the goal evalb

Expr == ("(F and T)",R) loops. We must recall that strict equality does a ‘careful matching’ as we
showed before. In the example, this means generating the outer constructor of both "(F and T)" and R
by means of evalb Expr. But getting an outer constructor for R entails generating a whole expression,
and by using the second rule of evalb, infinite expressions may be generated. These expressions, all of
which have an or in their representations, when finally compared with (F and T), fail.

7 Conclusions

We have shown throughout this paper that extensions are a suitable mechanism to solve a num-
ber of problems when working in a functional-logic language. Although lacking the deep theoretical
background of monads, extensions can be used as an alternative to define easily reusable code. The
concepts used are simple, and were already known in each declarative paradigm, such as the use of
arguments in logic programming to return output values, or the definition of higher order combinators
(e.g. *) in order to connect different computations in sequence. The novelty of our approach is that
it combines techniques of both main declarative streams, yielding a new mechanism that allows us to
address problems, as the addition of new features to functions, in a simple and appealing way. Specif-
ically, extensions avoid the necessity of lambda abstractions, provide a more symmetric definition of
the combinator * — from the point of view of types — and lead to nicer and more natural definitions
of types and auxiliary functions.

In spite of all the resemblances, extensions and monads are different techniques, each one with its
own particularities and limitations. An advantage of extensions is that they provide functions with
the possibility of multiple modes of use, therefore defining functions that can be reused in a wider
sense than in the case of monads. Another advantage is that the state extension allows one to dismiss
the stateful computations whenever they are not interesting, hence saving both time and space.

References

[AEH94] S. Antoy , R. Echahed, M. Hanus. A Needed Narrowing Strategy. 21st ACM Symp. on Principles of
Programming Languages, 268-279, Portland 1994.

[Ant92] S. Antoy. Definitional Trees, In Proc. ALP’92, Springer LNCS 632, 1992, 143-157.

[CLS97] R. Caballero-Rolddn, F.J. Lépez-Fraguas and J. Sdnchez-Herndndez. User’s Manual For TOY .
Technical Report D.I.A. 57/97, Univ. Complutense de Madrid 1997. The system is available at
http://mozart.sip.ucm.es/incoming/toy.html

[GH+96] J.C. Gonzélez-Moreno, T. Hortald-Gonzélez, F.J. Lépez-Fraguas, M. Rodriguez-Artalejo. A Rewrit-
ing Logic for Declarative Programming. Procs. of ESOP’96, Springer LNCS 1058, 156-172, 1996. (A
extended version to appear in the Journal of Logic Programming).

[Han94] M. Hanus. The Integration of Functions into Logic Programming: A Survey. J. of Logic Programming
19-20. Special issue “Ten Years of Logic Programming’, 583-628, 1994.

[Han98] M. Hanus (ed.). Curry, an Integrated Functional Logic Language, Draft, February 1998. Available at
http://www-ir.informatik.rwth-aachen.de/ hanus/curry/report.htlm

[HAS97] Report on the Programming Language Haskell: a Non-strict, Purely Functional Language. Version
1.4, Peterson J. and Hammond K. (eds.), January 1997.

[LLR93] R. Loogen, F.J. Lépez-Fraguas,M. Rodriguez-Artalejo. A Demand Driven Computation Strategy for
Lazy Narrowing. Procs. of PLILP’93, Springer LNCS 714, 184-200, 1993.

[L1095] Lloyd, J.W. Declarative Programming in Escher. Technical Report CSTR-95-013, Departament of
Computer Science, University of Bristol, June 1995.

[Pey87] S.L. Peyton-Jones. The implementation of functional languages, Prentice Hall, 1987.

[PW8T7] S.L. Peyton-Jones, P. Wadler. Imperative functional programming, 20 Annual Symposium on Princi-
ples of Programming Languages, Charleston, South Carolina, 1993.

[Wad90] P. Wadler. Comprehending Monads, Proc. ACM Conf. on Lisp and Functional Programming, 1990.

[Wad92] P. Wadler. The essence of functional programming, Proc. ACM conference on the Principles of Pro-
gramming Languages, pages 1-14, 1992.

[Wad95] P. Wadler. Monads for functional programming. In J. Jeuring and E. Meijer editors, Lecture Notes
on Advanced Functional Programming Techniques, Springer LNCS 925. 1995

