
Two type extensions for the constraint modelling
language MiniZinc

Rafael Caballeroa,∗∗, Peter J. Stuckeyb,1,∗, Antonio Tenorio-Fornésa,∗

aUniversity Complutense of Madrid
bNICTA and the University of Melbourne

Abstract
In this paper we present two type extensions for the modelling language
MiniZinc that allow the representation of some problems in a more natural
way. The first proposal, called MiniZinc?, extends existing types with ad-
ditional values. The user can specify both the extension of a predefined type
with new values, and the behavior of the operations with relation to the new
types. We illustrate the usage of MiniZinc? to model SQL-like problems
with integer variables extended with NULL values. The second extension,
MiniZinc+, introduces union types in the language. This allows defining
recursive types such as trees, which are very useful for modelling problems
that involve complex structures. A new case statement is introduced to se-
lect the different components of union type terms. The paper shows how a
model defined using these extensions can be transformed into a MiniZinc
model which is equivalent to the original model.
Keywords: Constraint Programming, NULL values, Union Types

∗Corresponding author
∗∗Principal corresponding author

1NICTA is funded by the Australian Government as represented by the Department
of Broadband, Communications and the Digital Economy and the Australian Research
Council.

2Rafael Caballero partially supported by the Spanish MINECO project CAVI-ART
(TIN2013-44742-C4-3-R), Madrid regional project N-GREENS Software-CM (S2013/ICE-
2731), UCM grant GR3/14-910502, and the German Academic Exchange Service (DAAD)

Preprint submitted to Elsevier May 4, 2015

1. Introduction

Constraint programming languages aim at providing mechanisms that
allow the user to represent complex problems in a natural way. With that
purpose, this paper presents two techniques for expressing constraints over
extensions of the type system defined in the constraint modelling language
MiniZinc [1].

In the first technique we allow extending existing types to include new
values defined by the modeller. For example, within the new proposed frame-
work, it is possible to extend the int predefined MiniZinc domain to sup-
port the representation of the value positive infinity. The new type intE is
introduced by the reserved word extended:

extended intE = []++int++[posInf];

where posInf is a new extended constant. Once a new extended type has
been declared, the user can also define new operations as extensions of the
predefined operations allowed by the language. For instance, in this example
one could define the result of the addition of two intE variables x and y,
either as x+y if both x and y are in the subtype int, or as posInf if at
least one of the two values is posInf as in IEEE standard 754 [2].3

Apart from extended arithmetic, the extension of standard domains is an
approach used in a multitude of disciplines, such as the design and testing of
digital circuits [3], the representation of null values to express unknown data
in database query languages such as SQL [4], or the many-valued logics [5].
All these problems can be successfully modeled in the language proposed in
this paper, which we call MiniZinc?.

In the second technique we introduce the possibility of defining union
types, also known as sum types [6]. An example is the distinction between a
leaf and an interior node in a tree, where nodes can have children, but leaves
do not. In the syntax of our proposal for introducing union types, which we
call MiniZinc+, a binary tree of integer numbers can be represented as:

3This standard is mainly devoted to the definition of Binary Floating-Point Arithmetic,
but it also includes the definition of arithmetic extensions for finite numbers, infinities,
and special “not a number” values (NaNs).

2

enum tree = { leaf(int), node(int, tree, tree) };
var tree(3):t;

Although the union type tree represents general binary trees, in practice
MiniZinc needs to know the size of the objects that define the model. This is
needed because each variable of these new datatypes is translated into several
MiniZinc variables that represent the atomic components of the structure.
Since the set of MiniZinc variables must be determined at compile time,
our translator needs to know the maximum number of variables that are
necessary to mimic each MiniZinc+ variable in advance. For this reason it
is necessary to specify the maximum level of the data terms of the type when
declaring the variables. For instance, the declaration var tree(3):t; in-
dicates that t is a tree of maximum level 3. In our setting the level of any
term is at least 0 (for constant terms), which means that in the example t
can only contain trees with a maximum height of 3.

We allow equality constraints for terms of union types, and introduce a
new case statement for selecting the subterms of a term. In order to solve
constraints over the new types, we present a source-to-source transformation
from both models including the new types into MiniZinc. Source-to-source
compilation is not the best choice from the point of view of performance, but
we have chosen this technique for two main reasons:

1. The higher level provided by source-to-source transformations allows
explaining clearly the transformation in terms of the well-known mod-
elling language MiniZinc, and to prove the soundness of the approach.

2. MiniZinc generates FlatZinc, a front-end accepted for many different
solvers (none of them including the features described in this paper to
the best of our knowledge). Generating MiniZinc code means that
any of those solvers can be used afterwards.

In the case of MiniZinc?, the transformation represents each extended
decision variable as a pair of MiniZinc variables. The first variable contains
a possible value of a standard type. The second variable contains a value
in the extended type and also works as a switch that selects one of the
two variables during the search. The transformation applies not only to
constraint satisfaction problems, but also to optimization problems. In the
case of union types, MiniZinc+, each variable of a union type is represented
by a set of variables that represent which constructor must be selected at

3

Primitive Purpose
sv([e1, . . . , en]) Check that e1, . . . , en correspond to standard values
prdf(op) Call to the predefined operator op
eq(a,b) Syntactic equality of a and b, used when redefining =

Table 1: New Primitives introduced in MiniZinc?

each level, ensuring in this way the representation of any term of the type at
the given level.

The next Section introduces MiniZinc?, its syntax based on MiniZinc
with functions [7], and the transformation that converts MiniZinc? mod-
els into MiniZinc models. Analogously, Section 3 introduces MiniZinc+

and explains how models including extended types can be transformed into
MiniZinc models. Section 4 discusses related work, while Section 5 presents
the conclusions and discusses possible future work. Finally, Appendix A
presents the soundness of the two approaches, while Appendix B discusses
their possible combinations.

2. MiniZinc Type Extensions

2.1. Syntax
MiniZinc is a medium-level constraint modelling language that allows

the modeller to express constraint problems easily. In particular we take
as starting point the version of MiniZinc with functions described in [7].
The grammar of MiniZinc?, the first MiniZinc extension proposed in this
paper, is described in Figure 1. It corresponds basically to the grammar of
MiniZinc, adding only the possibility of declaring new, extended types.
The non-terminal model is the start symbol of the grammar, vId, fId, pId
and tId are identifiers for: parameters and variables, functions, predicates
and new types, respectively. The terminal string represents an arbitrary
string constant. The values ci represent new constant identifiers. The no-
tation n∗[s] / n+[s] indicates zero or more / one or more repetitions of the
nonterminal “n” such that these repetitions are separated by string s. Bold-
face words are reserved words of the language.

The only difference of this grammar with respect to the standard MiniZ-
inc with functions presented in [7] is the new nonterminal typeE and the

4

model −→ typeE∗[;];decl,∗[;]; assig∗[;]; pred∗[;]

; funct∗[;];const∗[;]; solv; out;
type −→ int | bool | float | tId | range
vtype −→ type | var type
typeE −→ extended tId =

[c−n, . . . , c−1] ++type++ [c1, . . . , cm]
exp −→ vId | constant | vId[exp]

| arrexp[exp] | setexp | arrexp
| if exp then exp else exp endif
| pId(exp∗[,]) | fId(exp∗[,])
| let {decl∗[,] const∗[,]} in exp
| forall (arrexp)
| exists (arrexp)

arrexp −→ [exp∗[,]]
| [exp | genvar+[,] where exp]

setexp −→ { exp∗[,] } | range
| {exp | genvar+[,] where exp}

genvar −→ vId+[,] in setexp
| vId+[,] in arrexp

range −→ exp .. exp
decl −→ vtype : vId

| array[range] of vtype : vId
| set of type: vId
| var set of setexp: vId

assig −→ vId = exp

const −→ constraint exp
funct −→ function decl (decl∗[,]) = exp
pred −→ predicate pId(decl∗[,]) = exp

solv −→ solve satisfy | solve minimize vId
| solve maximize vId

out −→ output ([sh∗[,]])
sh −→ show(exp) | "string"

Figure 1: MiniZinc? grammar

5

inclusion of type identifiers (tId) as possible types. Moreover, our setting
includes the new built-in primitives listed in Table 1.

2.2. Example: Extending the Boolean type for a full adder combinational
circuit

Suppose that we wish to model combinational circuits with undefined (i.e.
neither true nor false) signals [3]. Then, in our setting we can extend the
standard MiniZinc Boolean type with a new constant undef. The definition
in MiniZinc? of the new type can be found in the first line of the model in
Figure 2. Note that replacing bEx with bool in lines (3-6) and omitting
lines (8-28) yields a standard MiniZinc model for this problem.

The model redefines the behavior of the Boolean connectives ∧, ∨ and
xor taking into account the new constant as indicated in the truth tables of
Figure 3 (where 0 stands for false, 1 for true and ⊥ stands for undef).

1 0 ⊥
1 1 1 1
0 1 0 ⊥
⊥ 1 ⊥ ⊥

(a) ∨

1 0 ⊥
1 1 0 ⊥
0 0 0 0
⊥ ⊥ 0 ⊥

(b) ∧

1 0 ⊥
1 0 1 ⊥
0 1 0 ⊥
⊥ ⊥ ⊥ ⊥

(c) xor

Figure 3: Truth tables including the undefined value

Observe that these tables correspond to both the Kleene logic and to the
Łukasiewicz logic [5].

In our setting these tables are implemented by means of MiniZinc func-
tions. For instance, the standard MiniZinc operator xor is redefined in
MiniZinc? as shown in lines (8-12) of Figure 2. The function first defines
a local decision variable c1, which uses the predefined function sv in order
to check if both parameters a and b contain standard values, that is, values
different from undef. If this is the case (line 10), then the function returns
the result of using the standard MiniZinc operator xor, which in our setting
can always be accessed by using the wrapper prdf (standing for predefined).

Otherwise, if either a or b is undef, then the result is undef according
to the table for extended xor of Figure 3. The schema of this function will
be usual in all the conservative redefinitions of standard operators. The
code for functions redefining ∧ and ∨ is analogous.

6

1 extended bEx = bool ++ [undef];
2 int n;
3 array[1..n] of var bEx: x;
4 array[1..n] of var bEx: y;
5 array[1..n+1] of var bEx: s;
6 array[1..n+1] of var bEx: c;
7

8 function var bEx:xor(var bEx:a, var bEx:b) =
9 let{var bEx:r, var bool:c1=sv([a,b]),

10 constraint (c1 /\ (r = (a prdf(xor) b)))
11 \/ (not c1 /\ r=undef)
12 } in r;
13

14 function var bEx:/\(var bEx:a, var bEx:b) =
15 let{var bEx:r, var bool:c1=sv([a,b]),
16 var bool:c2= (a=false \/ b=false),
17 constraint (c1 /\ r = (a prdf(/\) b)) \/
18 (not c1 /\ c2 /\ r=false) \/
19 (not c1 /\ not c2 /\ r= undef)
20 } in r;
21

22 function var bEx:\/(var bEx:a, var bEx:b) =
23 let{var bEx:r, var bool:c1=sv([a,b]),
24 var bool:c2= (a=true \/ b=true),
25 constraint (c1 /\ r = (a prdf(\/) b)) \/
26 (not c1 /\ c2 /\ r=true) \/
27 (not c1 /\ not c2 /\ r=undef)
28 } in r;
29

30 constraint c[1]=false /\ s[n+1]=c[n+1]
31 constraint forall([s[i]=x[i] xor y[i] xor
32 c[i]|i in 1..n])
33 constraint forall([c[i+1]=(x[i] /\ y[i]) \/
34 ((x[i] xor y[i]) /\ c[i])|i in 1..n]);
35 solve satisfy;

Figure 2: An n bit full adder in MiniZinc?: x + y = s

7

Using these definitions we model the behavior of an n-bit adder digital
circuit in lines (30-34). The basic piece of the circuit is the full adder :

which adds binary numbers and accounts for values carried in as well as out.
The code of lines (30-34) employs n full adders to obtain an n-bit adder.
In particular, line (32) defines the output s using two xor gates, while lines
(33-34) model the carries employing two and and one or gates.

After transforming this model into a standard MiniZinc model, we can
use MiniZinc to obtain solutions such as the following:4

x = 1 0 ⊥ 1
y = 0 0 ⊥ 1
c = 0 0 ⊥ 1 0
s = 0 1 ⊥ ⊥ 0

Observe that in the second position from the right the addition ⊥ + ⊥ +1 (1
is the carry from the rightmost position) yields ⊥ in the result. In particular
this means that the carry is undefined as well, and thus in the third position
0 + 0+ ⊥ produces the output ⊥. However, in this case we can be sure that
the carry is 0, and thus in the fourth position we have 1+0+0 = 1 as output
with carry 0 as last bit. Note also that the MiniZinc representation is by
arrays where the least significant digit is the first position in the array, so
the actual MiniZinc solutions is:

x = [1, ⊥, 0, 1]
y = [1, ⊥, 0, 0]
c = [0, 1, ⊥, 0, 0]
s = [0, ⊥, ⊥, 1, 0]

4The output sentence is omitted in Figure 2 for simplicity.

8

2.3. From MiniZinc? to MiniZinc
In this Section we present an automatic translation from MiniZinc? to

MiniZinc. Thanks to this translation, the models written in the extended
setting can be solved using all the features (optimizations, different types of
solvers, etc.) included in MiniZinc. The translation can be presented as a
process in two phases:

1. First, functions, predicates and local declarations of variables are re-
moved from the model.

2. Second, the resulting MiniZinc? model, now containing neither func-
tions nor local declarations, is translated into MiniZinc.

Observe that the first phase can be applied to both MiniZinc and MiniZ-
inc? indistinctly. In particular, the function elimination is done unrolling
the function calls following ideas similar to those described in [7] (we assume
in our setting the use of total functions), which simplifies the task. The
elimination of constraints included in local declarations is managed using
the relational semantics [8] of MiniZinc where these constraints “float” to
the nearest enclosing Boolean context where they are added as a conjunct.
Analogously, local variable declarations are converted to global variable dec-
larations, see [9] for a more detailed discussion.

In the rest of the section we describe the second phase, which converts a
MiniZinc? model without functions and local declarations into a semanti-
cally equivalent MiniZinc model.

2.4. Transforming MiniZinc? expressions
In the case of MiniZinc? expressions, the transformation is defined in

terms of two auxiliary transformations, the first one representing the stan-
dard MiniZinc part of the expression (transformation τs(c)), and the second
one keeping a representation of the extended part (transformation τe(c)).

2.5. Notation
First we introduce some auxiliary notation:
We use t for type identifiers (either standard as bool, int and float

or extended such as bEx). Functions st, et :: Type→ bool take a type t as
parameter and return a boolean, indicating whether t is either a standard
(st) or an extended (et) type. Function ordt(k):: Constant→ int takes a
constant k of type t as parameter and return an integer that represents the

9

distance to k from the base type following the textual order in its definition
(the sub-index t in ord is omitted when it is clear from the context). For
instance, given the definition

extended int3 = [negInf]++int++[undef,posInf];

then:

• ordint3(negInf) = -1

• ordint3(undef)= 1

• ordint3(posInf) = 2

For every constant k, ordt(k) 6= 0 iff k is extended.
The function eRan(t) (extended Range) takes an extended type t as

parameter and returns a MiniZinc range as follows: define a set S as
S = {ordt(k) | k ∈ t} ∪ {0}, then eRan(t) = min(S) . . max(S). In
the example of int3 above: eRan(int3) = −1 . . 2. We choose for each
type t a default value ko(t) which will be used in the representation of extended
constants. The notation o(t) refers to the base type of t if it is extended, or
to t itself otherwise. Additionally, for each type t we define a value zt, which
is 0 if t is an atomic type, the array of n zeros ([0, . . . , 0]) if t is an array of
size n, the empty set ({}) if t is a set, and the minimum value in the base
type in the case of an integer subrange. In the rest of the paper we assume
that MiniZinc? models are well-typed following the type inference rules for
MiniZinc which can be found in [10], and use the notation type(e) to refer
to the type of e.

Next we explain the transformation of MiniZinc? expressions, distinguish-
ing between the different possibilities enunciated in the grammar (Section
2.1).

2.6. Identifiers, constants, array and set expressions
Base identifiers and constants. The transformations τs (standard part) and
τe (extended part) for identifiers and constants of base types are defined as
follows:

10

τs τe

Identifiers : x, t = type(x)
st(t) x zt
et(t) s(x) e(x)
Constants : k, t = type(k)
st(t) k zt
et(t) ko(t) ordt(k)

Observe that here identifiers represent both decision variables and param-
eters. The table indicate that whenever st(t) holds (that is, t is a standard
type), τs maps the identifier x to itself, while τe maps x to zt, the arbitrary
zero-value chosen for type t. For instance for var int:x; we have τs(x) = x
while τe(x) = 0.

If et(t) then x is an extended type identifier, and it is mapped to the
associated new identifiers s(x) of type t and e(x) of type eRan(t).

Constants are mapped to themselves paired with zt if standard, or to the
default constant from the underlying type and their order number if they
are extended, new values. For instance the constant negInf of type int3
verifies τs(negInf) = kint = 0, and τe(negInf) = ordint3(negInf) =
−1.

Array expressions. Array expressions of the form: e = [e1, . . . , en] are trans-
formed simply applying the transformations τs, τe to each array element:

τs(e) = [τs(e1), . . . , τs(en)] τe(e) = [τe(e1), . . . , τe(en)]

For instance, consider the array expression e defined as [true,false,undef].
Then, τs(e) = [true,false,false], and τe(e) = [0,0,1]. Observe that the un-
derlined false corresponds to the arbitrary constant kbool chosen to replace
undef and it is only used to keep the array with the same length and with
the standard constants in the same positions.

Array access. An array indexing of the form a[exp] with type(a) = <array
of t> is transformed as:

τs(a[exp]) = τs(a)[τs(exp)] τe(a[exp]) = τe(a)[τs(exp)]

We make use of the fact that MiniZinc arrays are always indexed by integers.
Consider the subexpression c[1] in line 30 of Figure 2. In this case,

type(c) = <array of bEx>, and thus st(bEx) is false while et(bEx) holds.

11

Therefore, τs(c[1])=cs[1] , τe(c[1])=ce[1], assuming s(c) is defined
as the new identifier cs and e(c) as ce.5

Set expressions. 6 Set expressions of the form e = { e1, . . . , en } with
type(e1) = · · · = type(en) = t are transformed depending on the type t. If
the type t is standard, then the transformation just defines the extended part
as the zero of the type, represented by the empty set, while the standard part
is the set containing the standard components of the elements.

Otherwise, if t represents an extended type, then the corresponding stan-
dard (extended) component must contain only those elements that actually
take a standard (extended) value. This is achieved by using a set compre-
hension set with a guard of the form:

where [τe(e1), . . . , τe(en)][i] = 0
for the case of the standard part (the extended part is obtained replacing
=0 by 6= 0 in the expression above). Observe that for each i this expression
becomes true if the i-th element of the set e takes a standard value (that is,
its extended part is 0). Formally:

• if st(t), then τs(e)= { τs(e1), . . . , τs(en) }, and τe(e)={}.

• if et(t), then the extended
τs(e) = {[τs(e1), . . . , τs(en)][i] | i in 1..n

where [τe(e1), . . . , τe(en)][i] = 0 }
τe(e) = {[τe(e1), . . . , τe(en)][i] | i in 1..n

where [τe(e1), . . . , τe(en)][i] 6= 0 }

2.7. Array and set comprehensions
Let 〈 exp | genvars where cond 〉 be an array or set comprehension

(with 〈,〉 representing either [,] or {,}). The translation of this expression con-
sists of two phases. The first phase processes each generator g in genvars.
We use the notation e[x 7→ x′] to indicate that all the occurrences of x in e
must be replaced by x′.

• If g ≡ gId in genExp with genExp a set or array of standard type,
then apply the replacement genvars[g 7→ gId in τs(genExp)].

5For simplicity we use the suffixes s and e to generate new identifiers for the standard
and extended parts of a construction in the rest of the paper.

6For set variables see Section 2.12.

12

• If g is of the form gId in arrayexp and arrayexp is an array of
extended type then:

– Apply the replacement
genvars[g 7→ f in index_set(τs(arrayexp))], where f is
a fresh variable.

– Apply the replacements
exp[gId 7→ arrayexp[f]] and cond[gId 7→ arrayexp[f]]

• If g ≡ gId in setexp and setexp is a set of extended type then:
Let fresh array expression a be
[ord−1

t (x) | x in τe(setexp) where x<0]++

[x | x in τs(setexp)]++

[ord−1
t (x) | x in τe(setexp) where x>0].

Then:

– Apply the replacement
genvars[g 7→ f in index_set(τs(a))], where f is a fresh
variable.

– Apply the replacements exp[gId 7→ a[f]] and cond[gId 7→
a[f]]

Let 〈(exp’) |genvars’ where cond’ 〉 be the result of applying this
transformation to all the generators in the array/set comprehension. Then,
the second phase of the translation is defined as:
- Array comprehensions:
τs = [τs(exp’) | genvars’ where τs(cond’)]
τe = [τe(exp’) | genvars’ where τs(cond’)]

- Set comprehensions:
τs = { τs(exp’) | genvars’

where τs(cond’) ∧ τe(exp)=0 }

τe = { τe(exp’) | genvars’
where τs(cond’) ∧ τe(exp) 6= 0 }

For example, let intE be the integer type extended with a new constant
posInf, and consider the following expression:

13

1 e = [y | x in [posInf, 4, 9, -1],
2 y in {8, -1, 8, posInf}
3 where x=y]

In order to simplify the presentation we use the notation L to represent the list
[posInf, 4, 9, -1], and S to represent the set {8, -1, 8, posInf}.
Therefore, the array comprehension is represented as:

1 [y | x in L, y in S where x=y]

First we select the first generator x in L, choosing i as new variable and
taking into account that τs(L) = [0, 4, 9, -1]. Applying the replace-
ments we obtain:

[y | i in index_set([0,4,9,-1]), y in S
where L[i]=y]

The second generator is y in S. Attending to the translation of set expres-
sions we have:
τs(S) = [[8,-1,8,0][i] | i in 1..4

where [0,0,0,1] = 0]

τe(S) = [[0,0,0,1][i] | i in 1..4
where [0,0,0,1] 6= 0]

Then, the array expression a is defined as:

a = [ord−1
t (x) | x in τe(S) where x < 0] ++

[x | x in τs(S)] ++
[ord−1

t (x) | x inτe(S) where x >0]

Observe that during the evaluation of the model a will be evaluated to
[]++[-1,8]++[posInf] = [-1,8,posInf]. The idea behind a is to
obtain the list of elements in S without repetitions and respecting the order
among elements. This mimics in MiniZinc? the behaviour of MiniZinc
where [x | x in {3,4,5,3,4}] is evaluated to [3,4,5].
The translation proceeds by replacing the second generator by a new variable
j, obtaining

14

[a[j] | i in index_set([0,4,9,-1]),
j in index_set(τs(a))
where L[i]=a[j]]

Finally:

τs(e) = [τs(a[j])| i in index_set([0,4,9,-1]),
j in index_set(τs(a))
where τs(L[i]=a[j])]

and

τe(e) = [τe(a[j])| i in index_set([0,4,9,-1]),
j in index_set(τs(a))
where τs(L[i]=a[j])]

During the evaluation the system will obtain:
τs(e) = [0,-1], and τe(e) = [1,0],

which corresponds to the MiniZinc representation of the MiniZinc? list
[posInf,-1].

2.8. Conditional and logical expressions
Expressions e ≡ if c then e1 else e2 endif are transformed as:

τs(e) = if τs(c) then τs(e1) else τs(e2) endif
τe(e) = if τs(c) then τe(e1) else τe(e2) endif

Note: the exists and forall constructions are simply expanded to dis-
junctions and conjunctions respectively and then transformed.

2.9. Predefined function and predicate calls
We consider the following predefined function and predicate calls:

- c ≡ sv([exp1,. . .,expn]). The purpose of this Boolean function is to
ensure that all the expressions correspond to standard values. Therefore:
τs(c) = (τe(exp1)=zt1) ∧ · · · ∧ (τe(expn)=zo(tn)), with zo(ti) the zero value
associated to the type ti of expression expi.

15

- c ≡ prdf(f)(exp1, . . ., expn), or alternatively c ≡ exp1 prdf(f)
exp2, with f a predefined function or an infix operator. prdf indicates that
this call corresponds to the predefined MiniZinc function/operator f even if it
has been redefined by the user. Thus, τs(c)= f(τs(exp1), . . . , τs(expn)),
or τs(c)=τs(exp1) f τs(exp2) if f is an infix operator, and τe(c) = zt
where t is the output type of f. Thus, the user should ensure, usually by
adding some constraints using sv that exp1, . . . , expn can only correspond
to standard values, otherwise the result of evaluating this function can be
unsound.
- c ≡ (exp1 = exp2), assuming that = has not been redefined. Then: τs(c)
is defined as

(τs(exp1) = τs(exp2) ∧ τe(exp1) = τe(exp2))

and τe(c) is defined as zbool. The result of the comparison depends both
on the standard and on the extended value. It is not enough to check only
the standard part, because in case of two different extended constants a,
b with base type t we have τs(b) = τs(a) = kt, but the result should be
false. Analogously, the extended part is not enough because for instance
considering the standard constants 3, 4, we have τe(3) = τe(4) = zbool. The
translation of (exp1 6= exp2) is simply not(exp1 = exp2), followed by
the translation of =.
- c ≡ (e in S), assuming that in has not been redefined. Then: τs(c) =
(τe(e) = 0 ∧ τs(e) in τs(S)) ∨ (τe(e) 6= 0 ∧ τe(e) in τe(S)) and τe(c) = 0.
Other set operations such as card, union or intersect can be defined
analogously.

This ends the transformation part for expressions. It only remains to
define the transformation applied to top-level constructions.

2.10. Transforming MiniZinc? models
The transformation of a MiniZinc? model M, denoted by (M)T

?

is
obtained transforming each of these top-level constructions as described in
this section.

2.11. Declarations of extended types
The declarations of extended types are useful for obtaining the names of

the new types, their base standard types, the names of the extended con-
stants, and for generating the ord function described above. However, these

16

declarations do not generate directly any code in the transformed MiniZinc
model.

2.12. Declarations of variables and parameters
If c ≡ decl is a declaration of a variable or a parameter, then it is trans-

lated to MiniZinc as (decl)T
?

as defined by the following table:

τ ?

Var. or param. declarations: [var] t : x,
with o(t) ∈ {int, float, bool }
st(t) [var] t : x
et(t) [var] o(t): s(x); [var] eRan(t): e(x); C1

array [S] of [var] t: a
st(t) array [S] of [var] t: a;
et(t) array [S] of [var] o(t): s(a);

array [S] of [var] eRan(t): e(a); C2

set of t: x
st(t) set of t: x;
et(t) set of o(t): s(x); set of eRan(t) : e(x)
var set of setexp : x, type(setexp) = <set of t >
t=int var set of setexp : x
et(t) var set of τs(setexp) : s(x);

var set of τe(setexp) : e(x);

with the constraints C1 and C2 defined as

C1 ≡ constraint e(x) = zo(t) → s(x) = ko(t);

and
C2 ≡ constraint forall([e(a[i]) 6= zo(t) →

s(a[i]) = ko(t)| i in S]);

The first column of the table distinguishes the different possible cases. The
constraints C1 and C2 are introduced to avoid the repetition of equivalent
solutions that is produced if the standard variables are not constrained. This
is done, by ensuring that if the variable takes an extended value (extended
part 6= zo(t)), then the standard part of the variable takes some arbitrary
value ko(t).

17

In our running example of Figure 2, the array x is transformed into:

array[1..n] of var bool: xs;
array[1..n] of var 0..1: xe;
constraint forall([xe[i]!=0 -> xs[i]=false

| i in 1..n]);

assuming that false is the arbitrary constant kbool.

2.13. Assignments and Constraints
Assignments of the form c ≡ vId = exp, with type(vId) = t are trans-

formed as follows:

τ ?

st(t) vId = τs(exp)
et(t) τs(vId) = τs(exp); τe(vId) = τe(exp)

Thus, the idea is to constrain the standard (respectively extended) part of
the identifier to the standard (respectively extended) part of the expression.

Constraints have the form c ≡ constraint exp;, where exp is a Boolean
expression. In this case the transformation simply takes into account that
the type of exp is standard, and therefore

cT
? ≡ constraint τs(exp)

2.14. Output Item
The translation of an output item adds a new requirement, being able to

print extended types. An expression of the form show(exp) must return a
string representing the possibly extended expression exp. An extended type
definition of the form

extended tId [c−n, . . . , c−1]++type++ [c1, . . . , cm];
creates an array of string tnames

array[eRan(tId)] of string: tnames =
[c−n, . . . , c−1, "dummy", c1, . . ., cm];

and replaces each show(e) by

18

if(fix(τe(e))==0)
then show(τs(e))
else show(tnames[τe(e)])
endif

For example output [show(x)]; where x is of type int3 creates

array[-1..2] of string: int3names =
["neginf","dummy","undef","posInf"];

output [if (fix(xe) == 0) then show(xs)
else show(int3names[xe]) endif];

2.15. Satisfaction and Optimization
A satisfaction problem is encoded in MiniZinc? using the solve item

solve satisfy. In the translation to MiniZinc this is unchanged. How-
ever, MiniZinc also allows defining optimization problems, using the state-
ments solve minimize e or solve maximize e. In MiniZinc? we also
allow the optimization of expressions with extended range, extending implic-
itly the order < to the new elements accordingly to their position with respect
to the standard type in the definition of the type extension (see Section 2.4).

In standard MiniZinc, the optimization of an arithmetic expression is
treated as the optimization of a variable constrained to be equal to the ex-
pression. Thus we consider goals either of the form solve minimize y; or solve
maximize y; with y a variable of some extended type t.

In order to compare values k of extended types in the transformation we
consider the lexicographical ordering over pairs of the form (τe(k), τs(k)). Let
a be the minimum base type value in t if this exists, and b be the maximum
base type value in t if this exists. If a and/or b do not exist, then a =
min(τs(y)) and b = max(τs(y)). As a last resort, if we are to use a solver which
artificially represents unbounded objects of the base type in a finite range
a..b we can use these values. Note that most finite domain solvers have this
restriction. If we cannot determine either a or b then the optimization cannot
be translated.7 If a and b can be determined, we transform minimize/maximize
y as minimize/maximize τe(y) ∗ (b− a+ 1) + τs(y).

7We are aiming to extend MiniZinc to directly handle lexicographic objectives, in
which case this problem would disappear.

19

1 extended time = (0..23) ++ [oneDayOrMore];
2

3 function var time:+(var time:x, var time:y) =
4 let {var time:r, var bool:c=sv([x,y]),
5 constraint
6 (c /\ x + y>23 /\ r=oneDayOrMore) \/
7 (c /\ x + y<=23 /\ r=x prdf(+) y) \/
8 (not c /\ r=oneDayOrMore) }
9 in r;

10

11 time: t1 = 5;
12 var time:t2;
13 var time:total = t1 + t2 + 21;
14 solve minimize total;
15 output(["Total=",show(total),
16 " t2=",show(t2),"\n"]);

Figure 4: Modelling time with an extended value

For instance, the example in Figure 4 models the time required to perform
some task. The time is measured in hours, from 0 to 23, plus a special value
oneDayOrMore. The addition operator + is redefined accordingly, ensuring
that if the sum of the two values exceeds 23 then the value oneDayOrMore
is returned. For this type a = 0 and b = 23. This simple example indicates
that task t1 requires 5 hours and that the goal is to minimize the function
t1 + t2 + 21 represented by the decision variable total.

In the example, the sum of the values of the parameters exceed 23 hours,
and therefore even assuming the minimum possible value for c (which is 0),
the expression takes the value oneDayOrMore. After transforming the model
MiniZinc yields the expected values for variables total and t2 :
Total=oneDayOrMore t2=0

2.16. Experimental Results
This section presents a practical example of usage MiniZinc? that has

been used to check the feasibility of the proposal from the point of view of
the implementation. The prototype implementation can be found at https:
//gitorious.org/minizincplus.

20

https://gitorious.org/minizincplus
https://gitorious.org/minizincplus

The tool STCG [11] generates MiniZinc models whose solutions consti-
tute test-cases for testing SQL views.

Although realistic test-cases involve generating values for tables with sev-
eral rows and queries relating different SQL views, we show here a very simple
case of a test case for a SQL view defined as

create view V as
select *
from T
where (a != b or a != c) is null;

with T a table defined as:

create table T (a int, b int, c int);

The condition indicates that the expression (a != b or a != c)must
be evaluated to NULL. In fact NULL values are an important feature in the
relational database model [12].

In order to generate the model that can represent this condition we extend
the models including two new types: 8

extended intN = [] ++ int ++ [NULL];
extended boolN = [] ++ bool ++ [NULLb];

And redefine the operators (=, !=, ∨, ∧) for integer and Boolean types
extended with NULL:

function var boolN:’=’(var intN:x, var intN:y)
= let { var boolN: r,

var bool: c = sv([x,y]),
constraint (not(c) /\ eq(r,NULLb))
\/ (c /\ eq(r, (x prdf(=) y)))

} in r;

function var boolN:’!=’(var intN:x,var intN:y)

8This is also applicable to other domains allowed in SQL, but here we show these two
types as an example.

21

= let { var boolN: r,
var bool: c = sv([x,y]),
constraint (not(c) /\ eq(r,NULLb))
\/ (c /\ eq(r, (x prdf(!=) y)))

} in r;

function var boolN:’/\’(var boolN:a,
var boolN:b) =

let { var boolN:r,
var bool:c1 = sv([a,b]),
var bool:c2 = (eq(a,false)

\/ eq(b,false))),
constraint (c1 /\ eq(r,(a prdf(/\) b)))
\/ (not(c1) /\ c2 /\ eq(r,false))
\/ (not(c1) /\ not(c2) /\ eq(r,NULLb))

} in r;

function var boolN:’\/’(var boolN:a,
var boolN:b) =

let { var boolN:r,
var bool:c1 = sv([a,b]),
var bool:c2 = (eq(a,true)

\/ eq(b,true))),
constraint (c1 /\ eq(r,(a prdf(\/) b)))
\/ (not(c1) /\ c2 /\ eq(r,true))
\/ (not(c1) /\ not(c2) /\ eq(r,NULLb))

} in r;

Observe that the redefinition of the operator = is specially intricate, anal-
ogously to the overloading of equality operators in case of object oriented
languages (consider for instance the redefinition of equals in Java or C#).
In our setting, the new built-in primitive eq represents the syntactic equality
on expressions of extended type, that is the constraint that indicates that
two expressions correspond to the same value. It behaves like the operator
= if it has not been redefined. However, after redefining = the primitive eq
becomes necessary for checking equality. Notice that eq cannot be substi-
tuted by prdf(=) because (a prdf(=) b) is only defined if a and b are

22

extended expressions that are evaluated to standard values.
In the code above, after redefining the operator =:

• eq(r,NULLb) is a constraint which is satisfied only if r takes the value
NULLb.

• r=NULLb is always evaluated to NULLb, because after the redefinition
of = the equality of any value and NULLb is evaluated to NULLb.

• r prdf(=) NULLb is undefined because prdf(=) is not defined for
extended values.

The previous MiniZinc? code allows the modeller to express the where
condition of the SQL view to obtain a test case with a table containing a
single row:

var intN: a;
var intN: b;
var intN: c;
constraint eq((a!=b \/ a!=c), nullb);

Of course, one could write the code directly in MiniZinc, but it leads
to a more involved code. The hand-written code for this example would be
something similar to:

var int: a;
var bool: aNull;
var int: b;
var bool: bNull;
var int: c;
var bool: cNull;

constraint aNull->(a=0);
constraint bNull->(b=0);
constraint cNull->(c=0);

constraint
(aNull /\ bNull /\ cNull) \/

23

create table T (a int, b int, c int);
create view V as select * from T where a <> b or a <> c;

Figure 5: Sql Or: SQL example used in Table 2

(cNull /\ not aNull /\ not bNull /\ a=b) \/
(bNull /\ not aNull /\ not cNull /\ a=c);

solve satisfy;

The difference is clear even in this small example, and it becomes very
noticeable in larger, more realistic, examples.

In order to check the efficiency of the proposal we have tried models
produced by STCG for two SQL examples. The first example, which can be
found in Figure 5 is a simple query over just one table. In the second example
(Figure 6) the table board represents the position (x, y) and player (id) of
pieces of a game in a two dimensional grid, and the view checked shows the
players with at least one piece threatened (in the same row or column) by
another player piece.

Table 2 shows the data obtained with our current implementation. The
meaning of the columns of this table is the following:

• Sql Or and Board: Name of two standard MiniZinc models gener-
ated automatically by STCG in order to obtain test-cases for the SQL
examples of Figures 5 and 6.
This MiniZinc code generated by STCG does not take into account
the possibility of obtaining null values in the SQL columns (represented
in the model by integer MiniZinc variables).

• Sql OrT (respectively BoardT) are MiniZinc models obtained from Sql
Or (respectively Board) as follows:

1. Introduce in each model extended types:

extended intN = [] ++ int ++ [NULL];
extended boolN = [] ++ bool ++ [NULLb];

24

create table player (id int, primary key(id));

create table board (x int, y int, id int,
primary key(x,y),
foreign key (id) references player(id));

create view nowPlaying(id) as
select p.id
from player p
where exists (select b.id from board b where b.id=p.id)

;

create view checked(id) as
select p.id
from player p
where exists (select n.id from nowPlaying n where n.id

= p.id)
and not exists (select b1.id from board b1

where b1.id = p.id and
not exists

(select b2.id from board b2
where (b2.x - b1.x) * (b2.y-b1.

y)=0 and
(b1.id <> b2.id)));

Figure 6: Board: SQL example used in Table 2

25

Model Sql Or Sql OrT Board BoardT

var. decl. 3 6 8 16
var. flat. 5 32 47 7291
funct. calls 4 264 419 3556
size (KB) 0.5 5.5 13.2 528.6
transf. time 5 530
solve time 0.2 0.2 0.3 2.5

Table 2: Experimental data for two models generated by STCG

Then, change the types of the MiniZinc decision variables used in
the test case to the new types, and introduce the code of the func-
tions redefining the logic operators taking into account the new
null value as explained above. Let Sql Or? (respectively Board?)
be the MiniZinc? models obtained in this way.

2. The MiniZinc? models Sql Or? and Board? are transformed as
explained in this section. The result are two MiniZinc models
called in the Table Sql OrT and BoardT , respectively.

Thus, Sql Or and Board are two models that represent two examples of use
of MiniZinc for obtaining SQL test-cases without taking into account null
values, while Sql OrT and BoardT represent the same problem but now taking
into accout null values.

The rows of the table contain:

• var. decl.: Number of declared variables in the model. For instance
in the case Board in the MiniZinc model produced by STCG for the
second example are transformed into 16 variables in the model when
considering NULL values.

• var. flat.: Number of variables in the FlatZinc transformation of the
model. The flat version of the model shows better the amount of vari-
ables involved in the model. The flattening of calls to functions is the
main reason of the increment in the number of variables.

• funct. calls: The number of function calls included in the code, includ-
ing calls to the predefined operators {=,!=,∨, ∧ }. For instance in the

26

first example STCG generates a model including only 4 calls. After ex-
tending the model to MiniZinc? to support NULLs and applying the
transformation to obtain the equivalent MiniZinc model we obtain a
model with 264 function calls.

• size: The size in Kbytes of the models. It can be seen that the size
increases dramatically after the transformation.

• transf. time: Time required by the transformation in milliseconds. In
the more complex example of Board about 3 seconds are required by
our prototype to convert the MiniZinc? model into a MiniZinc model.

• solve time: The time required by the MiniZinc solver to obtain the
first answer in milliseconds.9

The implemented version of the tool does not perform common subex-
pression elimination. This not only affects the solving performance [7] but
also the number of function calls and the size of the model. Despite this
increment in size, number of variables and function calls, the experimental
results show that the theoretical proposal can be used in practice.

The prototype is available at
git@gitorious.org:minizincplus/minizincplus.git

3. Union Types

This section is devoted to the second extension we propose, which consists
on the possibility of introducing union types in MiniZinc. This variant of
MiniZinc is denoted by MiniZinc+ in this paper. The new types are intro-
duced via enum declarations similar to those allowed in the Zinc modelling
language [14], but with the noticeable difference of allowing recursive types.
This facilitates modelling problems associated to recursive structures such
as trees. One difference of MiniZinc+ with respect to union types in func-
tional languages is that MiniZinc models must represent finite sets of values
of bounded size. To preserve this property the modeller must introduce an
upper bound or level that limits the size of the structures.

In order to define and use the new datatypes we allow the following nov-
elties in MiniZinc+ models:

9Data from Gecode [13] FlatZinc solver statistical information.

27

• A syntax extension for defining union types.

• A new case statement for referring to subterms of the constructed
terms.

• A redefinition of the equality constraint for dealing with the new types.

• Recursive predicates are now allowed (they are not allowed in standard
MiniZinc).

We also introduce a transformation that converts the new MiniZinc+

models into standard MiniZinc models, so they can be solved using any
off-the-shelf constraint solver employed usually with MiniZinc. While Zinc
supported the translation of tuple and record types to base solver types [15],
it never supported the translation of union types, and indeed the approach of
Zinc cannot be extended to recursive union types, since it occurs at compile
time, before the data is known.

3.1. Syntax
The syntax of this feature is the same as described in Section 2.1 after

replacing the definition of the extended types by the new union types with
the following syntax:

enum T = { c1(t11, · · · , t1m1), · · · , cn(tn1 , · · · , tnmn)}

with T , is a new type name tij are already existing type names, and ci iden-
tifiers representing constructor names. In our setting the only expressions of
union type T allowed are variables of the type, and constructor terms (cterms
in the following) of the form ci e1 . . . en with 1 ≤ i ≤ n and ej expressions of
type tij for j = 1 . . .mi. An important concept is the level of a term:

1. The level of terms of standard MiniZinc types such as int is always
0.

2. The level of a completely defined term (term without variables), cor-
responds to the height of the syntax-tree representing the structure of
the term.

3. In the case of variables of union type, the user must indicate in the vari-
able declaration the level of the associated term, that is the maximum
level allowed for terms represented by this variable.

28

4. The level of a constructed term that includes variables is

level(ci(e1, . . . , en)) = 1 + max(level(e1), . . . ,level(en))

An associated concept is the path of a subterm x′ of a completely defined
term x, path(x, x′). If x′ = x then path(x, x′) = ε. If x′ 6= x, let x′′ be the
inner subterm of x that contains x′, x′′ = ci(. . . , xj−1, x

′, xj−1, . . .). Then,
path(x, x′) = path(x, x′′).j. The sets of paths of a term x, spath(x) is the
set containing all the paths of subterms in x.

The same concept can be extended to variables of type T and level l: their
sets of paths are defined as the union of all the sets of positions of completely
defined terms of type T at level k for k ≤ l, and to non-completely defined
terms of type T (that is, terms including variables at some positions).

Observe that paths play a rôle similar to that of positions in term rewrit-
ing. Similarly to the case of positions we assume the notation q ≤ p for
indicating that the path q is a prefix of path p. We assume that p.ε.q and
p.q represent the same position, and in particular write p instead of ε.p.

3.2. Example
Figure 7 models the following well-known problem: given an initial set

of numbers S and a number N , try to obtain an arithmetic expression that
yields N from the values in S by using the four basic arithmetic operations:
addition, subtraction, multiplication and division. Divisions can only be
applied to operands divisible without remainder. Parentheses are allowed,
and we can suppose that any value in S can be used any number of times
(including 0), but that the size of the expression has some arbitrary upper
bound. For instance, considering the set S = {3, 14, 32} and N = 7, if
we limit the numbers in the expressions to a maximum of 4, we have the
following solution (among others): ((32 + 3)− 14)/3 = 7.

Modelling this problem in MiniZinc is not straightforward, since the
natural representation of arithmetic expressions is as arithmetic trees with
operations in the internal nodes and numbers at the leaves.

In our extension the representation is quite simple. First the input pa-
rameters are declared: the number to obtain (7), the maximum amount of
numbers (4), and the set S of input numbers. Then, we declare the possible
operators, and the type tree representing the expression. Both are union
types. A variable t of the union type tree is then declared. The declaration
includes between parentheses the maximum depth of the term of type tree

29

int:N=7;
int:level = 4;
set of int: S = {3,14,32};
enum op = {add , subst , multi , divi};

enum tree = { leaf(int), node(op, tree, tree)};

var tree(level):t;

predicate validTree(var tree:t, var set of int: S) =
case t of

leaf(x) --> x in S;
node(o,t1,t2) --> validTree(t1,S) /\ validTree(t2,S);

endcase;

predicate value(var tree:t, var int:v) =
case t of

leaf(x) --> v=x;
node(o,t1,t2) --> let {var 0..1000:v1, var 0..1000:v2} in

(value(t1,v1) /\ value(t2,v2) /\
appOp(o,v1,v2,v));

endcase;

predicate appOp(var o:op,var int:v1,var int:v2,var int:v)=
case o of

add --> v = v1+v2;
subst --> v = v1-v2;
multi --> v = v1*v2;
divi --> v = v1 div v2 /\ v1 mod v2 = 0;

endcase;

constraint validTree(t,S);
constraint value(t,N);

solve satisfy;
output([show(t)]);

Figure 7: Numeric expression producing a given value

30

that t can contain. In this case it is straightforward to check that the the
maximum amount of numbers allowed in the expression is an upper bound of
the depth of the tree. We require that the tree is valid in the sense that the
leaves are elements of S, and that the result of evaluating the tree is N . In
the predicate value two local variables are introduced in order to compute
partial results with a fixed range (declaring them as integers causes overflow
in MiniZinc). Observe that the three predicates employ the case statement
for distinguishing the possible forms of types/operators. Finally we solve the
model (solve satisfy), and display the result output[show(t)].

In the next subsections we explain the details of the proposed extension
together with its transformation into standard MiniZinc.

3.3. Variable declarations
Each variable in MiniZinc+ is transformed into MiniZinc as a set of

variables and one constraint.
In the set of variables there is a distinguished variable, called the selector

variable, that indicates the outer constructor in the value that the variable
can take.

More formally, given a union type

enum T = { c1(t11, · · · , t1m1), · · · , cn(tn1 , · · · , tnmn)}

We define the transformation of variable x of union type T at level l (repre-
sented by the notation (x : T, l)T

+
) as a tuple (V,C), with V a set of variables

with their types, and C a constraint, defined as follows:

• if l = 0:
V = {x : 1..n} and C =

∧
i ∈ 1..n
mi > 0

x 6= i

• if l > 0. For i = 1 . . . n, j = 1 . . .mi let xij be new variable names,
and let (Vij, Cij) be defined as:

1. (Vij, Cij) = ({xij : tij},true) if tij is a standard MiniZinc type.
2. (Vij, Cij) = (xij : tij, l − 1)T

+
otherwise.

Then:
V = {x : 1..n} ∪

n⋃
i=1

mi⋃
j=1

Vij

31

and

C =
n∧
i=1
{(x 6= i→

mi∧
j=1

(
∧

v:t′∈Vij
v = zt′)) ∧ (x = i→

mi∧
j=1

Cij)}

As the definition shows, the selector variable is always transformed into
a variable with the same name and range 1..n, where n is the number of
constructors defining the type. When the level is 0 we add constraints to en-
sure that the selector variable can only take the index value of a constructor
without arguments, which is the only 0-level term allowed. In the case of a
level greater than 0 we collect all the variables obtained in the recursive calls
plus the selector. Moreover, we include a constraint which is the conjunc-
tion of the constraints for each value i = 1 . . . n. For each i the generated
constraint consists of two parts:

1. If the selector takes a value different from i then ensure that all the
variables associated to the i th constructor take an arbitrary value zt′
(t′ the type of the corresponding variable). This is done because if
these variables were left unbound they would take all the values in
their domain and produce repeated solutions.

2. If the selector variable takes the value i in a solution then it must
verify also all the constraints associated to the variables associated to
this constructor.

For instance, the fragment of code

enum op = {sum , minus , prod , div};
enum tree { leaf(int), node(op, tree, tree) };
var tree(2):t;

is transformed into standard MiniZinc as:

var 1..2: t;
var int: t_1_1;
var 1..4: t_2_1;
var 1..2: t_2_2;
var int: t_2_2_1_1;
var 1..4: t_2_2_2_1;

32

var 1..2: t_2_2_2_2;
var 1..2: t_2_2_2_3;
var 1..2: t_2_3;
var int: t_2_3_1_1;
var 1..4: t_2_3_2_1;
var 1..2: t_2_3_2_2;
var 1..2: t_2_3_2_3;

constraint
((t!= 1)->(t_1_1= 0)) /\
((t!= 2)->(t_2_1= 1 /\

t_2_2= 1 /\ t_2_2_1_1= 0 /\ t_2_2_2_1= 1
/\ t_2_2_2_2= 1 /\ t_2_2_2_3= 1 /\

t_2_3= 1 /\ t_2_3_1_1= 0 /\ t_2_3_2_1= 1 /\
t_2_3_2_2= 1 /\ t_2_3_2_3= 1)) /\

((t= 2) ->(((t_2_2!= 1)->(t_2_2_1_1= 0)) /\
((t_2_2!= 2)->(t_2_2_2_1= 1 /\ t_2_2_2_2= 1 /\

t_2_2_2_3= 1)) /\
((t_2_2= 2) ->(t_2_2_2_2!= 1 /\ t_2_2_2_2!= 2 /\

t_2_2_2_3!= 1 /\ t_2_2_2_3!= 2)) /\
((t_2_3!= 1)->(t_2_3_1_1= 0)) /\
((t_2_3!= 2)->(t_2_3_2_1= 1 /\

t_2_3_2_2= 1 /\ t_2_3_2_3= 1)) /\
((t_2_3= 2) ->(t_2_3_2_2!= 1 /\ t_2_3_2_2!= 2 /\

t_2_3_2_3!= 1 /\ t_2_3_2_3!= 2))));

Figure 8 can help to understand the meaning of the variable names. For
instance, the variable t of type tree can take either the value 1 indicating
that t is a leaf, or 2 indicating that t is of the form node(...). The only
variable associated to the leaf case is t_1_1 that represents the number
stored in this leaf. The constraint (t 6=1)→ (t_1_1= 0) indicates that this
variable is arbitrarily set to 0 when t is not 1. On the contrary, if t is 1 (that is,
t 6= 2), then all the rest of the variables are constrained to take arbitrary val-
ues. Finally, if t = 2 we need more variables for the arguments of node. This
first one, var 1..4: t_2_1; represents the operation stored at the node.
The other two variables are var 1..2: t_2_2; and var 1..2: t_2_3;
are selectors the left and the right child trees, respectively. The meaning of
the rest of the variables can be obtained applying recursively Figure 8. This
leads to a more readable format for variables. For instance, t_2_3_2_2 can
be written as tnode(_,_,node(_,∗,_)), indicating that this variable contains the
value x such that t = node(_, _, node(_,x,_)). This notation is used

33

tree

1
leaf(int)

1
int:_1_1

2
node(op1, tree2, tree3)

1
op1:_2_1

1
add

2
minus

3
prod

4
div

2
tree2:_2_2

3
tree3:_2_3

Figure 8: MiniZinc variables associated to a MiniZinc+ variables of type tree

in the rest of the section when convenient. As a first example, we consider
again part of the constraints associated to the transformation of variable t
displayed above:

((t 6= leaf)→ · · · ∧
((t 6= node)→ . . . ∧
((t = node)→ (((tnode(_,∗,_) 6= leaf)→ . . .)∧

((tnode(_,∗,_) 6= node)→ . . .) ∧
((tnode(_,∗,_) = node)→

(tnode(_,node(_,∗,_),_)) 6= leaf ∧
tnode(_,node(_,∗,_),_)) 6= node ∧
tnode(_,node(_,_,∗),_)) 6= leaf ∧
tnode(_,node(_,_,∗),_)) 6= node)) ∧ . . .)

Observe in particular the part devoted to ensuring that the tree level is
satisfied by any solution of the model:

((t = node)→ . . .
((tnode(_,∗,_) = node)→

(tnode(_,node(_,∗,_),_)) 6= leaf ∧
tnode(_,node(_,∗,_),_)) 6= node ∧ . . .

34

the conjunction tnode(_,node(_,∗,_),_)) 6= leaf ∧ tnode(_,node(_,∗,_),_)) 6= node
indicates that the variable x in a tree of the form node(_,node(_,x,_),_)
can be neither a leaf nor a node. But any tree must take one of the
two forms. Thus, in order to make the constraint true, either of the outer
implication conditions tnode(_,∗,_) = node or t = node must be false. If
tnode(_,∗,_) = node is false this means that the form node(_,node(...),_)
is not allowed for variable t, which is logical since we are limiting the max-
imum level of t to 2. If the outer implication condition t = node does not
hold the tree corresponds to a single leaf, and this also ensures that the level
constraint is kept. Another part of the constraint, not displayed here for
the sake of space, indicates that the form node(_,_,node(...)) is also
forbidden.

This small example shows the main drawback of our approach: the great
amount of variables necessary for representing the union type variables which
grows exponentially with the level. In this example, with level=2, 13 variables
have been generated. With level=4, as in the example of Figure 7, a total
of 63 variables are produced, and with level 8 a total of 1021 variables are
necessary. Of course some of the variables can be eliminated analyzing the
associated constraints (in fact all the variables whose suffix considered as a
path is not in path(x)), but this only affects the variables of the last level
and does not prevent the exponential growth. In any case, the generated
variables are defined in small ranges and related by equality and inequality
constraints, which are good properties for finite domain solvers.

3.4. Equality
We define the transformation of the equality constraint between two union

type expressions e1, e2 introducing the following auxiliary notation:

• Let x be a variable of type T defined at level l, and p a path in
spath(x), then [x]p = xp, with xp the MiniZinc variable obtained
in the transformation of x that corresponds to path p.
For instance, given the variable declaration var tree(2):t; and the
path p = 2.2, then [t]2.2 =t_2_2.

• Let s be a non-variable term of type T , and p in spath(s). Then

– If p is of the form p1.p2 with p1 the path to a variable x subterm
of s, define: [s]p = [x]p2 .

35

For instance, consider a term s= node(sum,leaf(3),x), with
x defined by var tree(2):x;, and a path p = 2.3.2.2. Then,
[s]2.3.2.2=x_2_2. Observe that here 2.3 indicates first that s is a
node (value 2), and then points to its third argument (value 3),
which corresponds to variable x.

– If the subterm of s at p is a standard value v, then: [s]p = v.
For instance, given s= node(sum,leaf(3),t), and p = 2.2.1.1,
[s]2.2.1.1=3.

– If p does not contain the path of any variable, and the subterm
of t at p is a term rooted by constructor c, then: [s]p = i, with i
the textual position of c in the definition of its union type. For in-
stance, given s= node(sum,leaf(3),t), and p = 2.2, [s]2.2=1,
indicating that the second argument of s corresponds to leaf
(value 1 because it is the first constructor in the definition of
tree.

Then, for any expressions e1, e2 of the same union type T :

• Let S be spath(e1) ∩ spath(e2).

• If S = ∅, then (e1 = e2)T
+

= false.

• If S 6= ∅, then:
(e1 = e2)T

+
=

∧
q∈S

[e1]q = [e2]q

The idea is that the paths q ∈ spath(e1)∩ spath(e2) represent the pos-
sible subterms that can be solutions of e1 = e2. Observe that the definition
indicates implicitly that spath(e1) ∩ spath(e2) = ∅ implies (e1 = e2)T

+
=

false. An example may help to understand this transformation. Consider
again the same type for arithmetic operations, this time with a tree of level
3.
enum op = {sum , minus , prod , div};
enum tree = { leaf(int), node(op, tree, tree) };
var tree(2):t;
var tree(3):s;
constraint node(sum, node(minus, leaf(6), leaf(8)), t) = s;

36

Thus, here e1 = node(sum, node(minus, leaf(6), leaf(8)), t),
and e2 = s. First, the set of paths are obtained:

spath(t) = { ε, 1.1, 2.1, 2.2, 2.3, 2.2.1.1, 2.3.1.1 }
spath(s) = { ε, 1.1, 2.1, 2.2, 2.3, 2.2.1.1, 2.3.1.1, 2.2.2.1, 2.2.2.2, 2.2.2.3,

2.2.2.2.1.1, 2.2.2.3.1.12.3.2.1, 2.3.2.2, 2.3.2.3, 2.3.2.2.1.1,
2.3.2.3.1.1 }

spath(node(sum, node(minus, leaf(4), leaf(3)), t)) =
= { ε, 2.1, 2.2, 2.3, 2.2.2.1, 2.2.2.2, 2.2.2.2.1.1, 2.2.2.3, 2.2.2.3.1.1,

2.3.1.1, 2.3.2.1, 2.3.2.2, 2.3.2.3, 2.3.2.2.1.1, 2.3.2.3.1.1 }

Thus

spath(e1) ∩ spath(e2) = { ε, 2.1, 2.2, 2.2.2.1, 2.2.2.2, 2.2.2.3, 2.2.2.2.1.1,
2.2.2.3.1.1, 2.3, 2.3.1.1, 2.3.2.1, 2.3.2.2,
2.3.2.3, 2.3.2.2.1.1, 2.3.2.3.1.1 }

The transformation contains one equality for each of the elements in this
intersection, as displayed in the following table

path equality constraint
ε 2 = s

2.1 1 = s_2_1
2.2 2 = s_2_2

2.2.2.1 2 = s_2_2_2_1
2.2.2.2 1 = s_2_2_2_2
2.2.2.3 1 = s_2_2_2_3

2.2.2.2.1.1 6 = s_2_2_2_2_1_1
2.2.2.3.1.1 8 = s_2_2_2_3_1_1

2.3 t = s_2_3
2.3.1.1 t_1_1 = s_2_3_1_1
2.3.2.1 t_2_1 = s_2_3_2_1
2.3.2.2 t_2_2 = s_2_3_2_2
2.3.2.3 t_2_3 = s_2_3_2_3

2.3.2.2.1.1 t_2_2_1_1 = s_2_3_2_2_1_1
2.3.2.3.1.1 t_2_3_1_1 = s_2_3_2_3_1_1

For instance, the equality constraint 2 = s_2_2_2_1 corresponds using
our alternative notation to minus = snode(_,node(∗,_,_),_). Solving the con-

37

straint obtained as conjunction of all the equities that appear in the second
column of the table (together with the constraints associated to the variable
definitions) yields values representing terms of the form:

t= leaf(a)
s= node(sum, node(minus, leaf(6),leaf(8)), leaf(a))

with a an integer, and also solutions of the form:

t= node(o,leaf(a), leaf(b))
s= node(sum, node(minus, leaf(6),leaf(8)),

node(o,leaf(a),leaf(b))

with o any op value, a, and b integers.

3.5. Case statements
We introduce case statements to facilitate the decomposition of the union

type expressions. Each case branch includes a pattern representing a pos-
sible form of the case expression. These patterns can include new variables
representing arbitrary subterms. An interesting property of these variables
is that they do not need to be declared, and that they do not generate new
variables in the transformed code. Instead they are used as references to the
corresponding subterms. Case statements have the following syntax:

caseStatement −→ case exp of branch∗ endcase;
branch −→ pat --> boolExp;

where pat is a cterm with the same type as exp and boolExp is a Boolean
expression. A particularity of pat is that it only allows new variables not
defined in the context. These variables are called from now on pattern vari-
ables and occur also in boolExp. Moreover, we assume also that pat is linear,
meaning that it contains no repeated variable.

The use of case statements is useful for navigating the structure of the
union type expressions. The transformation detects whether a branch con-
dition cannot hold, not expanding further that case. This approach is useful
for “cutting” recursive predicate calls when the recursion is based on the
structure of the terms.

38

The transformation of a case expression of the form case exp of c1 ->
b1; . . . ; cn -> bn; end; is defined as ∧n

i=1 (exp, ci->bi)T
+
, where the aux-

iliary (exp,pat -> boolExp)T
+
transforms a particular branch following

the next steps:

1. First obtain the MiniZinc expression e1 defined as e1 = (pat = exp)T
+
.

The transformation of (exp = pat)T
+
is done considering all the vari-

ables in pat as variables of level 0 and with the suitable type for the
position they have in pat.

2. Let e2 be the result of removing (replacing by true) from e1 all the
constraint equalities of the form x = e with x a pattern variable of pat.
Let θ be a substitution such that for each x = e in e1 with x a pattern
variable θ(x) = e.
If the domain of θ does not include all the pattern variables, then
(exp,pat -> boolExp)T

+
= true and the transformation of this

branch is finished.
3. Else (exp,pat -> boolExp)T

+
= e2 -> boolExpθ

3.6. Predicate and Function calls
With the introduction of recursive types, the use of recursive predicates/-

functions becomes a necessity. Our setting proposes the acceptance of recur-
sive predicates and functions. We concentrate here on the transformation of
predicates, but analogous ideas can be employed for functions. The trans-
formation is in fact the standard idea of replacing the calls by the predicate
bodies. The process is repeated until the recursion ends. In order to avoid
infinite recursion, the system checks that in the recursive call at least one
of the union parameters has reduced its level. Otherwise the transformation
finishes returning an error.

Consider a (possibly recursive) predicate p defined as

predicate p (t1: a1, ... tn: an) = exp;

where ti and ai stand for the type and name of the arguments respectively,
with i = 1 . . . n. Then each predicate call p(v1, . . . , vn) is transformed by:

1. Defining a substitution θ = {a1 7→ p1, . . . , an 7→ pn}.
2. Replacing the call by (expθ)T

+
.

39

The end of the recursive calls is obtained naturally when the body of the
predicate is defined by a case statement, as the following example extracted
from Figure 7 shows:

enum op = {sum , minus , prod , div};
enum tree = {leaf(int), node(op, tree, tree)};
var tree(2):t;

predicate positive(var tree:s) =
case s of

leaf(x) --> x>0;
node(o,s1,s2) --> positive(s1) /\ positive(s2);

endcase;

constraint positive(t);

In this example the transformation replaces the call positive(t) by

case t of
leaf(x) --> x>0;
node(o,s1,s2) --> positive(s1) /\ positive(s2);

endcase;

The transformation of the case statement yields (the details are omitted
for the sake of simplicity, since they are explained in detail in the following
recursive call):

(t = leaf→ tleaf(∗) > 0) ∧
(t = node→ positive(tnode(_,∗,_)) ∧ positive(tnode(_,_,∗)))

Then, the call positive(tnode(_,∗,_)) is transformed as:

case t_node(_,*,_) of
leaf(x) --> x>0;
node(o,s1,s2) --> positive(s1) /\ positive(s2);

40

endcase;

Observe that at this point tnode(_,∗,_) is considered a variable of type tree
with level 1, which means that it only admits terms of the form leaf(x)
that is, path(tnode(_,∗,_)) = {ε, 1.1}.

In order to transform the first branch, first the associated equality con-
straint leaf(x) = tnode(_,∗,_) must be transformed.

Since path(leaf(x)) = {ε, 1.1} the two sides share the same set of
paths, and the transformed equality is

leaf = tnode(_,∗,_) ∧ x = tnode(_,leaf(∗),_)

Extracting the substitution associated to the pattern variables, θ = {x 7→
tnode(_,leaf(∗),_) }, and applying this substitution to the right-hand side of the
branch yields the transformed code associated to this branch:

tnode(_,∗,_) = leaf→ tnode(_,leaf(∗),_) > 0

The transformation for the second branch is analogous: first obtain the
transformation of node(o,s1,s2) = tnode(_,∗,_), as explained in subsec-
tion 3.4. Considering that path(node(o,s1,s2)) = {ε, 2.1, 2.2, 2.3}, and
that we have seen above that path(tnode(_,∗,_)) = {ε, 1.1}, the only common
path is ε, that is node(o,s1,s2) = tnode(_,∗,_) is transformed into node =
tnode(_,∗,_).

This transformation does not include values for the pattern variables o,
s1, s2, and therefore this branch is transformed simply into the constant
true. The transformation of the call positive(tnode(_,_,∗)) is analogous
and thus no new recursive calls are produced. Thus, the initial constraint is
transformed into:

constraint

(t = leaf → tleaf(∗) > 0) ∧
(t = node → ((tnode(_,∗,_) = leaf→ tnode(_,leaf(∗),_) > 0 ∧ true) ∧

(tnode(_,_,∗) = leaf→ tnode(_,_,leaf(∗)) > 0 ∧ true)));

41

3.7. Predefined function show
In this subsection [c]s denotes the string representation of a constructor

c. That is [tree]s = “tree”.
The transformation of show(t), (show(t))T

+
, depends on the type and

form of t:

1. If the type of t is standard, then it is kept unaltered in the transformed
program (show(t))T

+ = show(t).
2. If t is a c-rooted term of a union type of the form c(t1, . . . , tn) then:

(show(t))T
+ = [c]s ++ "(" ++

(show(t1))
T + ++ "," ++

. . .

(show(tn))
T + ++ ")"

3. If t is a variable x defined as var T(l):x;, with

T ≡ c1 t
1
1 . . . t

1
m1 | · · · | cn t

n
1 . . . t

n
mn

Then, (show(x))T + = sVar(T,x,l,1), with sVar(T,x,l,i) de-
fined as follows:

If i > n then return “” (the empty string)
If l = 0 and mi > 0 then return sVar(T,x,l,i+1)
Else

If mi = 0 return the following MiniZinc statement:
if (fix(x=i))
then [ci]s
else sVar(T,x,l,i+1)
endif

Else return
if (fix(x=i))
then [ci]s ++”(” ++
sVar(ti1, xi1, l − 1, 1) ++”, ” ++ . . .++
sVar(timi , ximi , l − 1, 1) ++”)”

else sVar(T,x,l,i+1)
endif

The auxiliary transformation sVar is defined recursively, traversing all the
possible constructors in the type of the variable. The first line, corresponds

42

to the basic case, where the empty string is returned if we have already con-
sidered all the possible values of i. The next condition “If l = 0 and mi > 0
then” corresponds to the case of variable with level 0 and a constructor with
a positive number of arguments. The constraints associated to the variable
ensure that this case cannot occur, and consequently in this case we proceed
considering the next argument. Otherwise a MiniZinc if statement is gen-
erated ensuring that if the variable takes the value i the string corresponding
to the constructor and its associated arguments are displayed.

For instance, given a variable declaration var tree(2):t, the MiniZ-
inc+ code output([show(t)]); is transformed into the MiniZinc code
which is partially shown here:

output([show(
if (fix(t) = 1)
then "leaf" ++ "(" ++ show(t_1_1) ++ ")"
else if ((fix(t) = 2))

then "node" ++ "(" ++
(if (fix(t_2_1) = 1) then "sum"
...
else if (fix(t_2_1) = 4) then "div"
else ""
...endif endif)
++ "," ++
(if (fix(t_2_2) = 1)
then "leaf" ++ "(" ++ show(t_2_2_1_1) ++ ")"
...

else ""
endif

endif)]);

The transformation of the program of Figure 7 following the ideas ex-
plained in this section (not included here for the sake of space) displays as
first solution:

node(minus,
node(minus,

43

node(sum, leaf(3), leaf(32)),
leaf(14)),

leaf(14))

which corresponds to the arithmetic expression (3+32)-14-14 = 7, thus solv-
ing the problem established in our running example.

3.8. Experimental Results
The implementation of the prototype is available at https://github.

com/RafaelCaballero/MiniZincU. This subsection discusses the effi-
ciency of three different examples using union datatypes.

The code of the first example can be seen in Figure 9. The model in-
cludes two binary trees t and s, whose nodes contain integers in the range
-100..100. The level (that, the upper bound of the height) of the two trees
is determined by the parameter N. In the constraint section we require that
both trees contain at least all the integers i such that 0 ≤ i ≤ N . This
represents N + 1 different nodes, which can be stored in a binary tree of
height N ≥ 2 (a binary tree of level N can contain up to 2N − 1 nodes, and
2N − 1 ≥ N + 1 for every N ≥ 2). Moreover, the maximum value contained
in s must be greater than the maximum value in t, which implies that s
contains at least an additional value y > N . Finally, the goal is to minimize
the value y, which in this case corresponds to y = N + 1. The constraints
rely on the predicates contains and maxVal. The table in the same figure
shows the space and time growth with respect to the level N displayed in the
first column. The description of the rest of the columns is the following:

• Trans. Time: Time in seconds required by the transformation from
MiniZinc+ into MiniZinc.

• Size: Size in Kilobytes of the transformed code (that is the MiniZinc
code obtained after the transformation).

• Num. Vars: Number of variables generated in MiniZinc by each
MiniZinc+ union variable. For instance, for level N = 6, the MiniZ-
inc code contains 253× 2 variables (253 corresponding to t and 253 to
s).

• Sol. Time: Time required to obtain the first solution in MiniZinc.

44

https://github.com/RafaelCaballero/MiniZincU
https://github.com/RafaelCaballero/MiniZincU

int:N=9;
set of int: Int=-100..100;
enum tree = { leaf(Int), node(Int, tree, tree)};
var tree(N):t; var tree(N):s;
var Int:x; var Int:y;

predicate contains(var tree:t, var Int:r) =
case t of
leaf(o) --> r=o;
node(o,t1,t2) --> r=o \/contains(t1,r) \/contains(t2,r);
endcase;
predicate maxVal(var tree:t, var Int:r) =
case t of
leaf(o) --> r=o;
node(o,t1,t2) --> let {var Int:r1} in (maxVal(t1,r1) /\

let {var Int:r2} in (maxVal(t2,r2) /\
(r=max([r1,r2,o]))));

endcase;
constraint forall(i in 0..N)

(contains(t,i) /\ contains(s,i));
constraint maxVal(t,x) /\ maxVal(s,y) /\ x<y;
solve minimize y;
output([show(t), show(s)]);

Level(N) Trans. Time Size Num. Vars. Sol. Time
2 750 ms. 5 Kb 13 × 2 36 ms.
3 754 ms. 14 Kb 29 × 2 55 ms.
4 816 ms. 36 Kb 61 × 2 127 ms.
5 989 ms. 89 Kb 125 × 2 316 ms.
6 1312 ms. 218 Kb 253 × 2 1249 ms.
7 2205 ms. 523 Kb 509 × 2 2851 ms.
8 6110 ms. 1220 Kb 1021 × 2 6524 ms.
9 26905 ms. 2846 Kb 2045 × 2 12891 ms.

Figure 9: Containment and max. value of trees in MiniZinc+

45

The table shows the exponential growth of time and space with respect to
N . This is not surprising because the number of possible nodes in the trees
grows also exponentially with respect to N . In particular, the table shows
that number of new variables is proportional to the number of possible nodes
in the tree (with an approximate factor of 4, for instance with N = 8 there
are 1021 ∼ 4 × (28 − 1) variables). The file size (which determines the
compilation time), is influenced by the number of variables and their related
constraints. In the case of the constraints, it is important to notice that they
include not only those generated by the transformation of the variables, but
especially the constraints obtained by unfolding the recursive predicate calls.
An additional overhead is caused by the output statement: an expression
like show(t), with t of level N = 9, is transformed into an expression that
needs to check all the possible tree configurations with height less than 10,
and this requires approximately 11Kb of standard MiniZinc code.

Therefore, models using non-linear structures like trees can lead to a
‘combinatorial explosion’ which affects the size, time of compilation, and
often execution time. It is worth noticing that in many cases the exponential
growth is difficult to overcome. For instance, if we wish to represent binary
trees of height less than or equal to N in standard MiniZinc, it is natural
that we need a number of variables proportional to 2N − 1 in order to store
the values at the nodes, plus additional constraints to control which nodes
are indeed in the tree and which are not needed in a particular solution.

Our prototype includes an optimizer that can help to improve these figures
in some particular models. The idea is to detect whether the constraints
imposed over the data structure force the values of some variables to take only
one possible value. In such cases the optimizer can substitute the variable by
the constant, thus reducing the number of variables and constraints generated
in the transformed model.

An extreme case in this sense is the model of Figure 10, which represents a
fully complete tree with integer nodes, that is, a tree where the path to every
leaf contain exactly N nodes. Observe that this does not determine a unique
tree, the nodes can still contain any possible integer. What is determined
is the structure of the tree. The figures in the corresponding table show a
much more scalable problem, with the number of variables reduced to the
minimum necessary to contain the tree nodes, and the size of the transformed
model much smaller that in Figure 9 for trees of the same size.

The behavior of the optimizer can be better understood considering a
simple example with N = 2. With this level, the transformation initially

46

int:N=9;

enum tree = { leaf(int), node(int, tree, tree)};

var tree(N):t;

predicate compl(var tree:t, var int:l) =
case t of
leaf(x) --> l=1;
node(o,t1,t2) --> l>0 /\

compl(t1,l-1) /\ compl(t2,l-1);
endcase;

constraint compl(t,N);

solve satisfy;

output([show(t)]);

Level(N) Trans. Time Size Num. Vars. Sol. Time
2 553 ms. <1 Kb 3 20 ms.
3 552 ms. 1 Kb 7 21 ms.
4 557 ms. 3 Kb 15 24 ms.
5 642 ms. 7 Kb 31 23 ms.
6 735 ms. 15 Kb 63 37 ms.
7 1247 ms. 32 Kb 127 67 ms.
8 2218 ms. 67 Kb 255 311 ms.
9 4639 ms. 138 Kb 511 762 ms.

Figure 10: A fully complete tree in MiniZinc+

47

generates among other the following constraints for the model of Figure 10:
....
constraint (t = 2) /\ ((t_2_2 = 1) /\ (t_2_3 = 1));
constraint t_2_3 != 2 ->

((t_2_3_2_1 = 0) /\
(t_2_3_2_2 = 1) /\
(t_2_3_2_3 = 1));

...

From the first constraint the optimizer extracts the substitution {t 7→
2, t_2_2 7→ 1, t_2_3 7→ 1}. After applying the substitution the variables
can be removed, and the constraints are now:
....
constraint (2 = 2) /\ ((1 = 1) /\ (1 = 1));
constraint 1 != 2 ->

((t_2_3_2_1 = 0) /\
(t_2_3_2_2 = 1) /\
(t_2_3_2_3 = 1));

...

The first constraint is equivalent to true and is readily removed. In
the second constraint the implication condition is also true, and this yields
a new substitution {(t_2_3_2_1 7→ 0, t_2_3_2_2 7→ 1, t_2_3_2_3 7→
1}. Applying the same technique until no more substitutions are found,
the optimizer reduces the total number of variables from 13 to 3 in this
particular case, and all the model constraints are removed. Although the
optimizer rarely has such huge impact on the transformation performance,
it is still useful in real cases where part of the structure is determined by the
constraints (for instance if a constraint specifies that the tree cannot be a
single leaf).

The last example shows a model defining a linear data structure, in this
case a stack of integer numbers. In particular, the MiniZinc+ code of Figure
11 defines two stacks a and b, containing la and lb elements respectively.The
last constraint indicates that 0 < la < lb, that is both stacks are non-empty
and b contains more elements than a. The table shows that this model scales
very well when the size of the stack is increased. In particular notice that the

48

int:N=9 ;
enum stack = { empty, s(int,stack) };
var stack(N):a;
var stack(N):b;
var int:la;
var int:lb;

predicate length(var stack:s, var int: x) =
case s of
empty --> x=0;
s(n,s2) --> let {var int:x2} in

length(s2,x2) /\ x=x2+1;
endcase;

constraint length(a,la);
constraint length(b,lb);
constraint la>0 /\ la<lb;

solve satisfy;

output(["a: ",show(a),"\n",
"b: ",show(b),"\n"
]);

Level(N) Trans. Time Size Num. Vars. Sol. Time
2 591 ms. 2 Kb 5 × 2 21 ms.
3 585 ms. 3 Kb 7 × 2 24 ms.
4 598 ms. 5 Kb 9 × 2 25 ms.
5 594 ms. 6 Kb 11 × 2 26 ms.
6 672 ms. 9 Kb 13 × 2 26 ms.
7 634 ms. 11 Kb 15 × 2 27 ms.
8 672 ms. 14 Kb 17 × 2 48 ms.
9 735 ms. 17 Kb 19 × 2 31 ms.

Figure 11: Stacks in MiniZinc+

49

number of generated variables is linear with respect to N (in fact is 2N − 1
for a stack of level N).

In any case, it must be noticed that a source-to-source transformation is
not very suitable for obtaining a good performance. Our goal when imple-
menting this prototype was to check whether the theoretical ideas gave rise
to a reasonable framework for defining unions, and explore the limitations
of the proposal. In order to achieve a better performance these extensions
should be integrated as part of the MiniZinc system.

4. Related Work

The closest related work to MiniZinc? is a special case of extended types
also implemented in MiniZinc called option types [16]. Option types add an
additional value > to a type which acts as a identity element where possible.
While it might appear that examples we use, for example the integers with
NULL intN could be modelled with option types, the desired behaviour of
NULL differs from >. Since we can program the behaviour of extended types
we can implement the desired behaviour.

The closest work to MiniZinc+ is work on type reduction in Zinc [15].
Zinc uses data indepedent type reduction to rewrite tuple types and record
types to simpler language constructs. The type reduction in Zinc is done
independent of the data, unlike the approach we use here for MiniZinc+.
Type reduction of union types is not supported in Zinc, and indeed recursive
discriminated union types are not allowed in the language.

Another related work is [18], which enables the user to define open do-
mains, i.e., domains where values do not need to be explicitly and exhaus-
tively listed, but their elements can be acquired along the computation, when
needed. This approach could be useful in a future implementation of type
extensions as part of the system MiniZinc.

5. Conclusions and Future Work

We have presented two extensions of the MiniZinc type system that
allow the representation of many constraint satisfaction problems in a more
natural way.

The first proposal allows extending predefined types with new constants.
Some examples are models representing circuits including undefined entries

50

(representing for instance failing connections), database problems includ-
ing null values, problems that are better modelled using non-classical logics
that do not restrict the number of truth values to only true and false [5],
or scheduling problems with optional tasks (although for these scheduling
problems there are approaches [17] which allow using time-interval variables
and extend Constraint-Based scheduling to efficiently propagate on).

The second proposal allows to define union datatypes in the models, which
is specially useful in problems that can be naturally expressed using recursive
datatypes. In practice the level of recursion must be initially bound, but the
new types still are useful for modelling interesting problems which are natu-
rally represented by data structures such as trees. The main limitation of the
proposal is the exponential number of variables that can be generated during
the transformation into MiniZinc. An interesting line of future research is
to incorporate the union datatypes into the language in a way that permits
to create the variables dynamically, thus limiting the number of variables to
those necessary to represent the particular solution.

It is worth noticing that, although presented separately, both transfor-
mations can coexist, or even be combined in the same datatype: although
extending a union type makes little sense, it can be interesting for instance
to define trees whose nodes contain extended integers.

Clearly the modeller could directly use MiniZinc rather than MiniZ-
inc?, MiniZinc+, or their combination to model their problem (since both
MiniZinc? and MiniZinc+ are implemented by translation), but the direct
model is much less concise and much harder to get right since extended types
can interact in complex ways. Our experience in creating large models using
extended types by hand was that it was very difficult, motivating our need
for this work.

We present a model transformation that converts the models in the new
type systems into standard MiniZinc models. Thus, all the facilities in-
cluded in MiniZinc such as intensional lists, local definitions, sets, or pred-
icates are available in the new setting.

We establish the correctness of the proposed transformation at the se-
mantic level. This implies formalizing a suitable semantics for MiniZinc
and the proposed extensions, which is interesting by itself.

Regarding efficiency, we think that the implementation is acceptable for
small to medium-size models, although it can become a problem in the case
of big models (or complex models that require big data structures, in the
case of union types). In order to improve the performance, another approach

51

would be to implement a new underlying solver that takes into account these
features. For instance, the solver will generate extra variables only when they
are required. As mentioned in the introduction, we have considered instead a
source-to-source transformation for the sake of clarity in the explanation, the
possibility to prove the soundness of the approach, and because transcom-
piling to MiniZinc means the possibility of using all the solvers that accept
FlatZinc.

The main line of future research would be to integrate these features in
the standard MiniZinc system.

52

Appendix A. Theoretical results

In this section we present the theoretical results that support our pro-
posal. The idea is to prove that both the MiniZinc? (respectively MiniZ-
inc+) model and its transformation represent the same set of solutions. The
solutions are represented by well-typed substitutions:

Definition 1. Let M be a MiniZinc? model, Γ its associated type context,
and θ a substitution. We say that θ is a well-typed substitution forM iff

• The domain of θ is the set containing all the decision variables declared
inM.10

• For all x ∈ dom(θ), type(x) = 〈t〉 iff type(xθ) = 〈t〉.

For instance, in the type extension example of Figure 2 the following is a
part of a well-typed substitution (excluding let variables for simplicity):

θ1 =



n 7→ 4,
x 7→ [true | undef | false, true],
y 7→ [true | undef | false, false],
c 7→ [false | true | undef | false, false],
s 7→ [false | undef | undef | true, false],
. . .


where the notation [. . .| . . .] is employed to represent arrays. Analogously,
in the case of the union types example of Figure 7, again omitting let vari-
ables, the following is a well-typed substitution.

θ2 =



t 7→ node(subst,
node(subst,

node(add, leaf(32), leaf(3)),
leaf(14)),

leaf(14))
. . .


10The decision variables are the variables declared either at top level, in local let state-

ments, or as pattern variables. The parameter names in the declarations of user functions
and predicates are not considered decision variables in our setting.

53

The concept of solution is based on the evaluation of an expression in a
model with respect to a given well-typed substitution.

Definition 2. LetM be a MiniZinc?model, e an expression occurring inM,
and θ be a well-typed substitution forM. The evaluation of e with respect to
θ, denoted by ‖ e ‖θ, is defined distinguishing cases according to the definition
of MiniZinc?expressions (refer to non-terminal exp in the grammar)

1. ‖ id ‖θ = idθ, id any identifier.
2. ‖ k ‖θ = k, k any constant.
3. Set Expressions:

(a) ‖ {e1, . . . , en} ‖θ = ord({‖ e1 ‖θ, . . . , ‖ en ‖θ}).
ord is defined as the function that given a set of values, eliminates
the repetitions and sorts the values according to the order � that
extends ordt defined in Section 2.5 where:

a � b =


a ≤ b a, b standard
ordt(a) < 0 a ext., b std.
ordt(b) > 0 a std., b ext.
ordt(a) ≤ ordt(b) otherwise

(b) ‖ ei..ef ‖θ = {‖ ei ‖θ, ‖ ei ‖θ + 1, . . . , ‖ ef ‖θ}
4. Array Expressions: ‖ [e1, . . . , en] ‖θ = [‖ e1 ‖θ, . . . , ‖ en ‖θ]
5. Array Access:

(a) ‖ a[e] ‖θ = ti, with a an array identifier with index range m. . . n,
i = ‖ e ‖θ−m+1, 1 ≤ i ≤ n−m+1, and ‖ a ‖θ = [t1, . . . , tn−m+1].

(b) ‖ e1[e2] ‖θ = ti, with e1 not an array identifier, ‖ e1 ‖θ = [t1, . . . , tn],
and i = ‖ e2 ‖θ, 1 ≤ i ≤ n.

6. Set/list comprehensions of the form lc = 〈e | g1, . . . , gm where c〉, where:
(a) 〈, 〉 represents either {,} or [,].
(b) gj is of the form idj in arrayexp or idj in setexp.
(c) In particular suppose that g1 ≡ id in e′. Let ‖ e′ ‖σ be 〈 e1, . . . , en 〉

and define

σ1 = σ] {id 7→ e1}, . . . , σn = σ] {id 7→ en}

Moreover, in the definition we use the following notation:
• � represents the array concatenation or set union depending on
what 〈, 〉 is representing.

54

• C(e, c) being 〈e〉 if c holds and 〈〉 in other case.
Then, ‖ lc ‖θ is defined recursively as:
(a) If m = 1, then lc contains only one generator g, which must be of

the form id in e′. Then:

‖ 〈e |g where c〉 ‖σ =
C(‖ e ‖σ1 , ‖ c ‖σ1) � . . . � C(‖ e ‖σn , ‖ c ‖σn)

(b) If m > 1 then lc contains more than one generator. Analogously
to the previous item, suppose that the first generator is g1. Then:
‖ 〈e |g1, . . . , gm where c〉 ‖σ =
‖ 〈e |g2 . . . , gm where c〉 ‖σ1 � . . . �
‖ 〈e |g2 . . . , gm where c〉 ‖σn

7. ‖if c then e1 else e2 endif ‖θ =
• ‖ e1 ‖θ, if ‖ c ‖θ = true.
• ‖ e2 ‖θ, if ‖ c ‖θ = false.

8. ‖ let {d1, . . . , dn, c1, . . . , cn} in e ‖θ = ‖ e ‖θ, if (‖ c1 ‖θ = true ∧ . . .∧
‖ cn ‖θ = true)

9. ‖ sv([e1, . . . , en]) ‖θ = st(t1) ∧ · · · ∧ st(tn) with Γ ` ‖ e1 ‖θ :: t1,Γ `
‖ en ‖θ :: tn

10. ‖ e1 = e2 ‖θ = true if ‖ e1 ‖θ and ‖ e2 ‖θ are the same constant, false
otherwise.

11. ‖ p(e1, . . . , en) ‖θ = p(‖ e1 ‖θ, . . . , ‖ en ‖θ) , with p MiniZinc predefined
(that p is a relational operator or predefined arithmetic function such
as >,<,+ . . .) .

12. ‖ p(e1, . . . , en) ‖θ, with p a user-defined predicate or function. Suppose
that p is defined as predicate p(d1,. . . , dn) = e (analogous for func-
tions). By construction each di has an associated decision variable/pa-
rameter identifier xi. Then,

‖ p(e1, . . . , en) ‖θ = ‖ e ‖θ]{x1 7→‖ e1 ‖θ,...,xn 7→‖ en ‖θ}

13. Forall, exists constructions:
Let ‖ a ‖θ be [v1, . . . , vn], then:
• ‖forall(a) ‖θ = v1 ∧ · · · ∧ vn
• ‖exists(a) ‖θ = v1 ∨ · · · ∨ vn

55

14. Case statements:
‖ case exp of c1 -> b1; . . . ; cn -> bn; end; ‖θ =
(‖ exp = c1 ‖θ → ‖ b1 ‖θ) ∧ . . . ∧ (‖ exp = cn ‖θ → ‖ bn ‖θ)

Thus, the overall idea is simply to evaluate the expressions after replacing
the variables by their values. Observe that the case of predicates/functions,
we assume that θ contain values for the local variables and pattern variables
that occur in the evaluation of the expressions of the model, and that the
variables associated to each call can be clearly identified.

Now we can define the concept of solution.

Definition 3. Let M = T ;U ;D;A;C;S be a MiniZinc? or a MiniZinc+

model, where T is a sequence of type extensions and type union declarations,
D the sequence of variable declarations, A the sequence of assignments, P
and F sequences of predicate and function declarations, C the sequence of
constraints, and S the solve statement. Let θ be a well-typed substitution for
M. Then, we say that θ is a solution ofM if:

1. For every assignment a in A, ‖ a ‖θ = true.
2. For every constraint c in C, ‖ c ‖θ = true.
3. If S is of the form maximize f (respectively minimize f) then there is

no well-typed substitution σ for M verifying 1) and 2) and such that
fσ > fθ (respectively fσ < fθ)

For instance the constraint included in the model of Figure 2:
1 constraint c[1]=false /\ s[n+1]=c[n+1]

is evaluated to true by substitution θ1, because
1. θ1(c[1]) =false
2. θ1(s[5]) = θ(c[5]) =false,
3. Both c[1]=false and s[n+1]=c[n+1] are evaluated to true.
4. true ∧ true is true because the redefinition of the conjunction de-

scribed in Figure 2 behaves like the usual conjunction on boolean val-
ues.

In fact, it is easy to check that, adding the suitable values for local vari-
ables, substitutions θ1 and θ2 are solutions of the models presented in Figures
2 and 7, respectively.

The next definition transforms substitutions in MiniZinc? into substitu-
tions in MiniZinc.

56

Definition 4. Let M be a MiniZinc? model and σ be a well-typed substi-
tution ofM, then we define a substitution σT ?

σT
? = {τs(x) 7→ τs(v) | (x 7→ v) ∈ σ} ∪

{τe(x) 7→ τe(v) | (x 7→ v) ∈ σ, Γ ` x :: t, τe(x) 6= zt}

For instance, in the case θ1 we can obtain the substitution:

θ1
T ? =



n 7→ 4,
xs 7→ [true | false | false, true],
ys 7→ [true | false | false, false],
cs 7→ [false | true | false | false, false],
ss 7→ [false | false | false | true, false],
. . .

⋃

xe 7→ [0 | 1 | 0, 0],
ye 7→ [0 | 1 | 0, 0],
ce 7→ [0 | 0 | 1 | 0, 0],
se 7→ [0 | 1 | 1 | 0, 0],
. . .


where the false values of the first part of the substitution correspond to
the translation of undef as standard value, while the 0’s in the second part
correspond to the extended part of any boolean value.

We are ready establish the theoretical result that establishes the sound-
ness of the transformation for MiniZinc?.

Theorem 1. A well-typed substitution θ is solution of a MiniZinc? model
M iff θT

? is well-typed solution ofMT ?.

Proof Idea
We must check that θ verifies the Definition 3 with respect toM iff θT ?

verifies the same Definition with respect toMT ? .
For items 1 and 2, the result is a consequence of a similar auxiliary lemma

applied to expressions:
For every expression e and well-typed substitution θ:

• ‖ τs(‖ e ‖θ) ‖id = ‖ τs(e) ‖θT ?

57

• ‖ τe(‖ e ‖θ) ‖id = ‖ τe(e) ‖θT ?

where id represents the identity substitution. These results can be proven
using structural induction on the form of e.

Analogously, item 3 requires a generalization of the following result: For
every pair of constants k, k′ of some type t in M k ≤ k′ (with the order <
extended to the new types) iff

τe(k) ∗ (b− a+ 1) + τs(k) ≤ τe(k′) ∗ (b− a+ 1) + τs(k′)

where a and b are respectively the minimum and the maximum constants in
the base type for t.

Thus, θ1
T ? must be a solution of the translation of the code mode of

Figure 2. Analogously, we can define the transformation of a substitution in
MiniZinc+ to a substitution in MiniZinc.

Definition 5. Let M be a MiniZinc+ model and σ be a well-typed substi-
tution ofM, then we define a substitution σT +

σT
+(x) = x if x is not obtained by the transformation

of a variable of an union type
σT

+(xp) = [σ(x)]p if xp has been obtained transforming a
variable x of an union type

For instance, since θ2(t) = node(subst, . . . , . . . ,), we have that

θ2
T +(tnode(*,_,_)) = subst

or, using the notation employed in our implementation θ2
T +(t2_1)=2 (2 is the

constant associated to subst). The last theoretical result is the analogous
of Theorem 1 for the case of MiniZinc+, and proves that θ2

T + is a solution
for the translation of the model in Figure 7:

Theorem 2. A well-typed substitution θ is solution of a MiniZinc+ model
M iff θT

+ is well-typed solution ofMT +.

Proof Idea
As in the previous proof we must check that θ verifies the three items of

Definition 3 with respect to M iff θT
? verifies the same items with respect

58

to MT ? . In the case of MiniZinc+ the third item is independent of the
definition of union types, because in our proposal such values must be values
of standard types. In order to prove the first item, assignments, we prove
that there is a bijective mapping between terms in MiniZinc+ and their
representation in MiniZinc, and then the result holds by the definition of
the substitution θT + (Def. 5). The second item refers to constraint, and since
the only constraints allowed for union type terms are equality constraints
we proceed checking that ‖ e1 = e2 ‖θ = true iff ‖ e1 = e2

T + ‖θT + = true.
This can be done by induction on the structure of one of the terms (for
instance on the left-hand side term), distinguishing apart case statements
and predicate/functions which deserve an auxiliary result.

59

Type Extensions Union Types
Type Extensions sound -
Union Types sound sound (default)

Table B.3: Soundness of possible combinations

Appendix B. Combining Union Types and Type Extensions

So far we have presented type extensions (Section 2) and union types
(Section 3) as two separated enhancements that increase the expressiveness of
MiniZinc. An interesting question is whether both approaches can coexist,
and how a combined model can be transformed into a standard model.

The next Subsections discuss all the possible combinations and their im-
plementation. A summary of the results can be found in Table B.3.

Appendix B.1. Generalized Extended Types
The definition of extended types, represented by the non-terminal typeE

of the grammar presented in Figure 1, specifies that an extended type is
based on an standard type plus some additional constants. Although our
current implementation is limited to this case, it is possible to generalize this
definition in order to allow hierarchies of extended types. We call generalized
extended types to this new framework.

Appendix B.1.1. Definition of Generalized Extended Types
Consider for instance the generalized extended types defined in Figure

B.12. Initially, two first-level extensions of the standard type int are defined:
intInf for integers including positive and negative infinite, and intE for
integers extended with an error value undef. Then, two new types are built
over intE: intRat which includes a constant indicating that the number is a
non-integer rational, and intIrrat which adds the possibility of indicating
that the value corresponds to an irrational number. The addition over the
hierarchy based on intE is also extended defining three functions redefining
the operator +.

The relation between the different types of the example can be depicted
as follows:

60

extended intInf = [negInf] ++ int ++ [posInf];
extended intE = [] ++ int ++ [undef];
extended intRat = []++intE ++ [rationalNotInt];
extended intIrrat = [] ++ intRat ++ [irrational];

function var intE:+(var intE:a, var intE:a) =
let{var intRat:r,

var bool:c= sv([a,b]),
constraint (c /\ r= (a prdf(+) b)) \/

(not(c) /\ r= undef)
} in r;

function var intRat:+(var intRat:a, var intRat:a)=
let{var intRat:r,

var bool:ca= sv([a]), var bool:cb= sv([b]),
var bool:u= (a= undef) \/ (b= undef),
constraint (ca /\ cb /\ r= (a prdf(+) b)) \/

(u /\ r = undef) \/
(ca /\ not(u) /\ not(cb) /\ r= b) \/
(not(ca) /\ cb /\ not(u) /\ r= a) \/
(not(ca) /\ not(cb)) /\ r= undef)

} in r;

function var intIrrat:+(var intIrrat:a, var intIrrat:a)=
let{var intRat:r,

var bool:ca= sv([a]), var bool:cb= sv([b]),
var bool:u= (a= undef) \/ (b= undef),
constraint (ca /\ cb /\ r= (a prdf(+) b)) \/

(u /\ r= undef) \/
((ca xor cb) /\ not(u) /\ r= irrational)\/
(not(ca) /\ not(cb)) /\ r= undef)

} in r;

Figure B.12: Generalized extended MiniZinc typges

61

int

intInf intE

intRat

intIrrat
Thus, generalized extended types can be represented as tree-shaped hier-

archies with the root corresponding to a base type and the rest of the nodes
to extended types. This imposes the natural requirement of avoiding circular
definitions.

Appendix B.1.2. Generalizing primitives sv and prdf
In order to understand how the concepts of Section 2 can be applied to

this more general setting we consider now the code of the three redefinitions
of the operator + in Figure B.12. The first function defines the addition
of two intE numbers, indicating that if both of them are integer values
(represented by the boolean variable c) then the result is the usual addition
obtained by applying the standard operator +, while the result is undef if
any of the operands is undef. The second function defines the addition of
two intRat values. Using a similar schema, first two local variables ca and
cb are defined to check if the input parameters a and b are standard values.
As in the previous function if both are standard values, then the predefined
+ is employed to obtain the result. However, in this generalized context it is
necessary to carefully redefine the concepts of standard value and predefined
operator:

• Standard value means now checking if an expression of some extended
type Tc takes a value that belongs to a type Tp such that Tp is the parent
of Tc in the tree of generalized extended types. Thus, the primitive
sv[a,b,...] is applicable if all the values of the list are expressions
of the same extended type and is evaluated to true if all of them take
values belonging to the parent type.

• Predefined operator means now the operator defined in the parent type.
For instance, the expression (a prdf(+) b) is only applicable if both
a and b are variables of the same extended type and sv([a,b]) holds.
If this is the case the result corresponds to the definition of + in the
parent type.

62

Observe also that some other concepts need to be generalized. For in-
stance, the default value ko(t) associated to each standard type t is now
generalized to extended types in the following way: ko(t) = ko(t′) with t′ the
base type of t.

Thus, in the case of function intRat:+ of Figure B.12 we use sv to check
if both values are intE values and keep this information in local variables ca
and cb respectively. The variable u indicates if any of the values is undef.
The constraint cases are the following:

• If both parameters are standard (thus intE values), the definition of
intE:+ is employed.

• If any of them is undef (u holds) then the result is also undef (this
case overlaps with the previous one if both are intE but in this case
a prdf(+) b is also undef and no ambiguity arises).

• If parameter a takes an intE value but the parameter b does not (that
is, b=rationalNotInt), and moreover, if a is not undef, then we
are adding an integer and a non-integer rational and the result is again
rationalNotInt represented in the code by b.

• The case a=rationalNotInt and b a standard value different from
undef is analogous to the previous one.

• Finally, if the type both parameters is not standard, this means that we
are adding two non-integers rationals and the result is undef because
the result can be either an integer (for instance 1/2 + 1/2) or a non-
integer rational (1/2 + 1/3).

The third redefinition of + corresponds to intIrrat values and is now
easy to understand observing that:

• The code (ca xor cb) ∧ not(u) ∧ r= irrational) indicates that
only one parameter is an intRat and, moreover, that this parameter is
different from undef. In this case the other parameter is an irrational
and the addition of a rational (either integer or not) and an irrational
is always an irrational.

• The code (not(ca) ∧ not(cb)) ∧ r= undef) indicates that if both
parameters are irrational the result is undefined (we cannot be sure if
the sum is rational or irrational).

63

Appendix B.1.3. An Object-Oriented Perspective
The idea of deriving new types by adding values to already existing types

and redefining the behavior of certain operations, resembles loosely the prin-
ciples of inheritance[19] applied in object-oriented programming. Therefore,
it is worth exploring the relation between both approaches. Assume that
class (respectively type) B is defined in terms of class (respectively type) A.
Then:

• In object-oriented programming we say that B is a subclass of A, while
in our approach we say that B extends A.

• In object-oriented programming B can override the methods of A under
some circumstances. Analogously, in our approach B can redefine the
operators of A.

• When overriding a method, B can use the definition of the same method
in A. For instance, in Java this is done using the keyword super. In
our approach this is done by using the prdf reserved word.

However, these similarities are misleading; extending is not a synonymous
of subclassing. In fact, extending is closer to the concept of superclassing in
object-oriented languages:

In object-oriented programming, if B is derived from A, then B is a sub-
class of A, that is every B-object is considered an A-object, but not the other
way round. On the contrary, in our approach if B extends A, then every
A-value is a B-value, but not the other way round.

For instance, if we define in an object-oriented language intE as a sub-
class of int, then it is assumed that every intE object can be considered
an int object. However, in the example of Figure B.12 it is clear that every
int value is in fact an intE value, but there is a intE value, namely undef,
that is not in int.

This explains why before using prdf we ensure using the primitive sv
that the operands correspond to standard values; we need to ensure that the
operands belong to a ’subclass’, which is not always true. Thus, prdf is not
the analogous of super in Java, but the correspondence of a casting used to
convert an object of class B to the superclass A. In Java such casts are usually
preceded by some check like if(x instanceof A) A y = (A)x;. In our
setting the implicit cast required by prdf is usually combined with a type
check performed by the primitive sv.

64

Appendix B.1.4. Implementation
Currently under development, the implementation of this more general

setting is easy to describe as an iterative application of the transformation de-
fined in Section 2. The idea is to apply the transformation starting from those
extensions which corresponds to the leaves of the corresponding tree hierar-
chy. For instance, in the example of Figure B.12, first intInf e intIrrat
are eliminated using the transformation of Section 2. Then, the transforma-
tion is again applied to intRat, and finally to intE, obtaining a standard
and equivalent MiniZinc model.

A possible future line of research could be allowing to define new exten-
sions using two (or more) base types. In this case instead of tree shaped
hierarchies the structure would be a more general meet-semilattice[20], pos-
ing new problems similar to those of multiple inheritance in the case of object
oriented programming. From the point of view of the program transforma-
tion a new variable for each base type will be required, thus modifying the
transformation rules of Section 2.

Appendix B.2. Extending Union Types
The extension of union types makes little sense in our approach. The

main advantage of type extensions is to redefine the behaviour of operators
defined on standard MiniZinc types, and there is no predefined operator on
user types (except equality and disequality). Allowing the introduction of
new operators over union types will introduce this possibility but defines a
completely new framework.

Currently, if the modeller needs a new type including new constants,
then they can define a new union type based on the previous one. For
instance, consider this simple representation of natural numbers using its
Peano representation:
enum nat = {zero ,s(nat)};

And suppose that the modeller later needs to introduce a new type that
considers null as a possible value. Then a simple solution is:
enum nat = {zero ,s(nat)};
enum natnull = {notnull(nat), null};

Appendix B.3. Union types based on Extended Types
This combination is possible, and indeed can be useful. Consider the

following fragment of a model where a stack of extended integers is defined:

65

extended intInf = [negInf]++int++[posInf];
enum stack = { empty, s(intInf,stack) };
var stack(3):a;
var stack(3):b;

% stack t = push element x on stack s
predicate push(var intInf:x, var stack:s, var stack: t) =
t = s(x,s);

constraint push(posInf,empty,a);
constraint push(4,a,b);
...

It is interesting to observe the second constraint push(4,a,b). In this
predicate call 4 is an int, and push expects an intInf as first parameter.
However, as explained above, int can be considered a subclass of intInf
and thus 4 is also a intInf.

Regarding the implementation, it is obtained for free simply organizing
the two phases of the transformation: first union types are eliminated fol-
lowing transformation of Section 3, keeping type extension declarations in
the transformed model, and considering extension values and variables as
standard types. The result is a MiniZinc? model, which is then converted
into standard MiniZinc using the transformation of Section 2.

Appendix B.4. Mutually recursive Union Types
Defining union types based on other union types, or even allowing re-

cursive union types is sound, and in fact is included the default approach
of Section 3. For instance the example of Figure 7 uses the recursive union
type tree. Therefore the transformation of this mutually recursive, or self-
recursive types has been already discussed during the presentation of these
types.

References

[1] N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck, G. Tack,
Minizinc: Towards a standard CP modelling language, in: Proc. of
13th International Conference on Principles and Practice of Constraint
Programming, Springer, 2007, pp. 529–543.

66

[2] IEEE Task P754, ANSI/IEEE 754-1985, Standard for Binary Floating-
Point Arithmetic, IEEE, 1985.

[3] F. Azevedo, Thesis: Constraint solving over multi-valued logics - appli-
cation to digital circuits, AI Commun. 16 (2003) 125–127.

[4] E. F. Codd, Missing information (applicable and inapplicable) in rela-
tional databases, SIGMOD Record 15 (1986) 53–78.

[5] G. Malinowski, Many-Valued Logics, Oxford University Press, 1993.

[6] F. Barbanera, M. Dezani-Ciancaglini, U. de’ Liguoro, Intersection and
union types: syntax and semantics, Information and Computation 119
(1995) 202–230.

[7] P. J. Stuckey, G. Tack, Minizinc with functions, in: Proceedings of the
10th International Conference on Integration of Artificial Intelligence
(AI) and Operations Research (OR) techniques in Constraint Program-
ming, number 7874 in LNCS, Springer, 2013, pp. 268–283.

[8] A. Frisch, P. Stuckey, The proper treatment of undefinedness in con-
straint languages, in: I. Gent (Ed.), Proceedings of the 15th Interna-
tional Conference on Principles and Practice of Constraint Program-
ming, volume 5732 of LNCS, Springer-Verlag, 2009, pp. 367–382.

[9] L. D. Koninck, S. Brand, P. J. Stuckey, Constraints in non-boolean
contexts, in: Technical Communications of the 27th International Con-
ference on Logic Programming, volume 11 of LIPIcs, 2011, pp. 117–127.

[10] R. Caballero, P. J. Stuckey, A. Tenorio-Fornés, Finite type extensions
in Constraint Programming (extended version), Technical Report SIC-
05/13, Facultad de Informática, Universidad Complutense de Madrid,
2013. http://gpd.sip.ucm.es/rafa/minizinc/cptr.pdf.

[11] R. Caballero, J. Luzón-Martín, A. Tenorio-Fornés, Test-Case gener-
ation for SQL nested queries with existential conditions, Electronic
Communications of the European Association for the Study of Science
and Technology 55 (2012).

[12] E. F. Codd, Extending the database relational model to capture more
meaning, ACM Transactions on Database Systems 4 (1979) 397–434.

67

http://gpd.sip.ucm.es/rafa/minizinc/cptr.pdf

[13] Gecode Team, Gecode: Generic Constraint Development Environment,
2006. Available from http://www.gecode.org.

[14] K. Marriott, N. Nethercote, R. Rafeh, P. J. Stuckey, M. G. de la Banda,
M. Wallace, The design of the Zinc modelling language, Constraints 13
(2008) 229–267.

[15] L. De Koninck, S. Brand, P. Stuckey, Data independent type reduc-
tion for Zinc, in: T. Mancini, J. Pearson (Eds.), Proceedings of the
9th International Workshop on Constraint Modelling and Reformula-
tion (ModRef 2010), 2010, p. 15.

[16] C. Mears, A. Schutt, P. J. Stuckey, G. Tack, K. Marriott, M. Wallace,
Modelling with option types in minizinc, in: Proceedings of the 11th
International Conference on Integration of Artificial Intelligence (AI)
and Operations Research (OR) techniques in Constraint Programming,
number 8451 in LNCS, Springer, 2014, pp. 88–103. doi:http://dx.
doi.org/10.1007/978-3-319-07046-9_7.

[17] P. Laborie, J. Rogerie, Reasoning with conditional time-intervals, in:
D. C. Wilson, H. C. Lane (Eds.), Proceedings of the Twenty-First In-
ternational Florida Artificial Intelligence Research Society Conference,
AAAI Press, 2008, pp. 555–560.

[18] M. Gavanelli, E. Lamma, P. Mello, M. Milano, Dealing with incomplete
knowledge on clp(fd) variable domains, ACM Trans. Program. Lang.
Syst. 27 (2005) 236–263.

[19] B. Meyer, Object-Oriented software construction, second Edition ed.,
Prentice Hall, 1997.

[20] B. A. Davey, H. A. Priestley, Introduction to lattices and order / B.A.
Davey, H.A. Priestley, Cambridge University Press Cambridge [England]
; New York, 1990.

68

http://dx.doi.org/http://dx.doi.org/10.1007/978-3-319-07046-9_7
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-319-07046-9_7

	Introduction
	MiniZinc Type Extensions
	Syntax
	Example: Extending the Boolean type for a full adder combinational circuit
	From MiniZinc to MiniZinc
	Transforming MiniZinc expressions
	Notation
	Identifiers, constants, array and set expressions
	Array and set comprehensions
	Conditional and logical expressions
	Predefined function and predicate calls
	Transforming MiniZinc models
	Declarations of extended types
	Declarations of variables and parameters
	Assignments and Constraints
	Output Item
	Satisfaction and Optimization
	Experimental Results

	Union Types
	Syntax
	Example
	Variable declarations
	Equality
	Case statements
	Predicate and Function calls
	Predefined function show
	Experimental Results

	Related Work
	Conclusions and Future Work
	Theoretical results
	Combining Union Types and Type Extensions
	Generalized Extended Types
	Definition of Generalized Extended Types
	Generalizing primitives @sv@ and @prdf@
	An Object-Oriented Perspective
	Implementation

	Extending Union Types
	Union types based on Extended Types
	Mutually recursive Union Types

