
WFLP 2006

Implementing Dynamic-Cut in T OY 1

R. Caballero2 Y. Garćıa-Ruiz3

Departamento de Sistemas Informáticos y Programación
Universidad Complutense de Madrid

Madrid, Spain

Abstract

This paper presents the integration of the optimization known as dynamic cut within the functional-logic
system T OY . The implementation automatically detects deterministic functions at compile time, and
includes in the generated code the test for detecting at run-time the computations that can actually be
pruned. The outcome is a much better performance when executing deterministic functions including either
or-branches in their definitional trees or extra variables in their conditions, with no serious overhead in
the rest of the computations. The paper also proves the correctness of the criterion used for detecting
deterministic functions w.r.t. the semantic calculus CRWL.

Keywords: determinism, functional-logic Programming, program analysis, programming language
implementation.

1 Introduction

Nondeterminism is one of the characteristic features of Logic Programming shared
by Functional-Logic Programming. It allows elegant algorithm definitions, increas-
ing the expressiveness of programs. However, this benefit has an associated draw-
back, namely the lack of efficiency of the computations. There are two main reasons
for this:

- The complexity of the search engine required by nondeterministic programs,
which slows down the execution mechanism.

- The possible occurrence of redundant subcomputations during a computation.

In the Logic Programming language Prolog, the second point is partially solved
by introducing a non-declarative mechanism, the so-called cut. Programs using cuts
are much more efficient, but at the price of becoming less declarative.

In the case of Functional-Logic Programming the situation is somehow alleviated
by the demand driven strategy [2,8], which is based on the use of definitional trees

1 This work has been funded by the projects TIN2005-09207-C03-03 and S-0505/TIC/0407.
2 Email: rafa@sip.ucm.es
3 Email: ygruiz@gmail.com

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Caballero, Garćıa-Ruiz

[1,8]. Given any particular program function, the strategy uses the structure of the
left-hand sides of the program rules in order to reduce the number of redundant
subcomputations. The implementation of modern Functional-Logic languages such
as T OY [9] or Curry [6] is based on this strategy. Our proposal also relies on
the demand driven strategy, but introduces a safe and declarative optimization to
further improve the efficiency of deterministic computations. This optimization is
the dynamic cut, first proposed by Rita Loogen and Stephan Winkler in [10]. In
[4,3] the same ideas were adapted to a setting including non-deterministic functions
and a demand driven strategy, showing by means of examples the efficiency of the
optimization.

However, in spite of being well-known and accepted as an interesting opti-
mization, the dynamic cut had not been implemented in any real system up to
now. In this paper we present this implementation in the functional-logic system
T OY (available at http://toy.sourceforge.net).

The dynamic cut considers two special fragments of code:

(i) Rules with existential variables in the conditions.

(ii) Sets of overlapping rules occurring in deterministic functions.

As we will explain in section 3, computations involving these fragments of code can
be safely pruned if certain dynamic conditions are fullfilled.

A key point of the optimization is detecting deterministic functions. The infor-
mation about deterministic functions is required not only at compile time but also
at run-time, when it is used for checking dynamically if the cut must take place in
a particular computation. As previous works [10,4,3] have shown, this dynamic test
is necessary for ensuring the correctness of the cut, i.e. that the optimization does
not affect the set of solutions of any goal.

The determinism analysis performed by the system follows the well-known cri-
terion of non-ambiguity already introduced in [10]. From the theoretical point of
view, the novelty of this paper w.r.t. previous work is that we have proved formally
the correctness of such a criterion w.r.t. the semantic calculus CRWL, proposed as
suitable logic foundation for Functional-Logic Programming in [5]. Of course, com-
pleteness cannot be established because determinism is an undecidable property
[13]. For that reason we also allow the user to annotate explicitly some functions
as deterministic.

The paper is organized as follows. The next section introduces the non-ambiguity
criterion for detecting deterministic functions and the correctness theorem. Section
3 shows by means of examples the cases where the optimization will be applied.
Section 4 presents the steps followed during the implementation of the dynamic cut
in T OY, and Section 5 finalizes presenting some conclusions.

2 Detecting Deterministic Functions in Functional-
Logic Programs

This section proves the correctness of the non-ambiguity condition used for detecting
deterministic functions w.r.t. the semantic calculus CRWL [5].

2

Caballero, Garćıa-Ruiz

2.1 The CRWL calculus

CRWL is an inference system consisting of six inference rules:

BT Bottom:
e → ⊥ RF Reflexivity:

X → X

DC Decomposition
e1 → t1 . . . em → tm

c e1 . . . em → c t1 . . . tm
c ∈ CDn ∪ FSn+1, m ≤ n, ti ∈ CTerm⊥

FA Function Application:
e1 → t1 . . . , en → tn C r → a a a1 . . . ak → t

f e1 . . . en a1 . . . ak → t
(k ≥ 0)

if t 6= ⊥, (f t1 . . . tn → r ⇐ C) ∈ [R]⊥

JN Join:
e1 → t e2 → t

e1 == e2
t ∈ CTerm

The notation [R]⊥ In rule FA represents the set of all the possible instances of pro-
gram rules, where each particular instance is obtained from some function defining
rule in R, by some substitution of (possibly partial) terms in place of variables. See
[5] for a detailed description of this and related calculi.

2.2 Deterministic Functional-Logic Functions

Before defining and characterizing deterministic functions we need to establish
briefly some basic notions and terminology. We refer to [5] for more detailed defi-
nitions. We assume a signature Σ = 〈DC,FS〉, where DC and FS are ranked sets
of constructor symbols resp. function symbols. Given a countably infinite set V
of variables, we build CTerms (using only variables and constructors) and Terms
(using variables, constructors and function symbols). We extend Σ with a special
nullary constructor ⊥ (0-arity constructor) obtaining a new signature Σ⊥ and we
will write Term⊥ and CTerm⊥ (partial terms) for the corresponding sets of terms
in this extended signature.

A T OY program P is composed of data type declarations, type alias, infix op-
erators, function type declarations and a set of defining rules for functions symbols.
Each defining rule for a function f ∈ FS has a left-hand side, a right-hand side and
a optional condition: f t1 . . . tn| {z }

left-hand side

→ r|{z}
right-hand side

⇐ C|{z}
condition

where t1 . . . tn must be linear Cterms and C must consist of finitely many (possibly
zero) joinability statements e1 == e2 with e1, e2 ∈ Term. A natural approximation
ordering v for partial terms can be defined as the least partial ordering over Term⊥
satisfying the following properties:

• ⊥ v t, for all t ∈ Term⊥
• X v X, for all variable X

• if t1 v s1, ..., tn v sn, then c t1 . . . tn v c s1 . . . sn, for all c ∈ DCn and ti, si ∈
CTerm⊥.

A partially ordered set (poset in short) with bottom is a set S equipped with a partial
order v and a least element ⊥ (w.r.t. v). D ⊆ S is a directed set iff for all x, y ∈ D

there exists z ∈ D such that x v z, y v z. A subset A ⊆ S is a cone, iff ⊥ ∈ A

and for all x ∈ A, y ∈ S y v x ⇒ y ∈ A. An ideal I ⊆ S is a directed cone.
The program semantics is defined by the semantic calculus CRWL presented in

3

Caballero, Garćıa-Ruiz

[5]. CRWL (Constructor Based ReWriting Logic) is a theoretical framework for
the lazy functional logic programming paradigm. Given any program P , CRWL
proves statements of the form e → t with e ∈ Term⊥ and t ∈ CTerm⊥. We denote
by P `CRWL e → t that the statement e → t can be proved in CRWL w.r.t. P .
The intuitive idea is that t is a valid approximation of e in P. The denotation of
any e ∈ Term⊥, written [[e]], is defined as: [[e]] = {t ∈ CTerm⊥ | P `CRWL e → t}.

Now we are ready for presenting the formal definition of deterministic function
in our setting.

Definition 2.1 (Deterministic Functions)
Let f be a function defined in a program P. We say that f is a deterministic function
iff [[f tn]] is an ideal for every tn s.t. ti is a CTerm⊥ for all i = 1 . . . n.

We call a function non-deterministic, if it does not fulfill the previous definition.
The intuitive idea behind a deterministic function is that it returns at most one re-
sult for any arbitrary ground parameters [7]. In addition, in a lazy setting whenever
a function returns some value t, it is expected to return all the less defined terms
s v t as well. The previous definition of deterministic function takes this idea into
account. Consider for instance the following small program:

data pair = pair int int f 1 = pair 1 2 g 1 = 1 g 1 = 2

Using CRWL it can be proved that [[f 1]] = {⊥, pair ⊥ ⊥, pair 1 ⊥, pair ⊥ 2,

pair 1 2}, [[f t]] = {⊥} if t 6= 1, [[g 1]] = {⊥, 1, 2}, [[g t]] = {⊥} if t 6= 1. Then g is
a non-deterministic function because for the parameter 1 the set {⊥, 1, 2} is not an
ideal, in particular because it is not directed: taking x = 1, y = 2 it is not possible
to find z ∈ {⊥, 1, 2} s.t. x v z, z v 2. On the other hand, it is easy to check that
f is a deterministic function.

2.3 Non-ambiguous functions

The definition 2.1 is only a formal definition and cannot be used in practice. In
[4] an adaptation of the non-ambiguity condition of [11] is presented, which we will
use as an easy mechanism for the effective recognition of deterministic functions.
Although not all the deterministic functions are non-ambiguous, the non-ambiguity
criterion will be enough for detecting several interesting deterministic functions.

Definition 2.2 (Non-ambiguous functions)
Let P be a program defining a set of functions G. We say that F ⊆ G is a set of
non-ambiguous functions if every f ∈ F verifies:

(i) If f t̄n = e ⇐ C is a defining rule for f , then var(e) ⊆ var(t̄) and all function
symbols in e belong to F .

(ii) For any pair of variants of defining rules for f , f t̄n = e ⇐ C, f t̄′n = e′ ⇐ C ′,
one of the following two possibilities holds:
(a) Left-hand sides do not overlap, that is, the terms (f t̄n) and (f t̄′n) are not

unifiable.
(b) If θ is the m.g.u. of f t̄n and f t̄′n, then eθ ≡ e′θ.

In [3,4] the inclusion of the set on non-ambiguous functions in the set of deterministic

4

Caballero, Garćıa-Ruiz

functions was claimed. Here, and thank to the previous formal definition, we will
be able to prove the result.

Before that we need some auxiliar lemmata. The proofs of these results are
tedious but straightforward using induction on the structure of the CRWL-proofs
and are not included for the sake of the space. The first two lemmata establish
substitution properties that will play an important role in the proof. The lemmata
use the symbol CSubst for the set of all the c-substitutions, which are mappings θ :
V → CTerm, and the notation CSubst⊥ for the set of all the partial c-substitutions
θ : V → CTerm⊥ defined analogously. We note as tθ the result of applying the
substitution θ to the term t.

Lemma 2.3 Let t ∈ CTerm, s ∈ CTerm⊥ be such that t v s. There there exists
a substitution θ ∈ CSubst⊥ verifying tθ = s.

Lemma 2.4 Let t, t′ ∈ CTerm be such that: 1) t, t′ are linear, 2) var(t)∩var(t′) =
∅ and 3) There exists γ = m.g.u.(t,t’). Let s ∈ Cterm⊥ be a term and θ, θ′ ∈
CSubst⊥ such that tθ v s, t′θ′ v s. Then there exists a substitution θ′′ s.t. tγθ′′ =
t′γθ′′ = s.

Lemma 2.5 Let P be aprogram and e ∈ Term⊥. Then:

i) Let t, t′ ∈ CTerm⊥ be such that P `CRWL e → t and t′ v t. Then P `CRWL

e → t′.

ii) Let P be a program and e ∈ Term⊥ and θ ∈ CSubst⊥ be s.t. P `CRWL eθ → t.
Then P `CRWL eθ′ → t for all θ′ s.t. θ v θ′.

iii) Let ēn s.t. ei ∈ Term⊥ for all i = 1 . . . n, and s.t. P `CRWL e ēn → t, and
a ∈ Term⊥ such that e v a. Then P `CRWL a ēn → t.

iv) [[e]] is a cone.

Now we are ready to prove that non-ambiguous functions are deterministic.

Theorem 2.6 . Let P be a program and f be a non-ambiguous function defined in
P. Then f is deterministic.

Proof. In order to check that f is a deterministic function, we must prove that
[[f t̄n]] is an ideal, i.e.:
- [[f t̄n]] is a cone by lemma 2.5 item iv).
- [[f t̄n]] is a directed set. We prove a more general result: Consider e ∈ Term⊥ and
suppose that all the function symbols occurring in e are correspond to non-ambiguous
functions. Then, [[e]] is a directed set.

Let be. t, t′ ∈ Cterm⊥ verifying (R1) : P `CRWL e → t and (R2) : P `CRWL e → t′.
We prove that exists s ∈ Cterm⊥ s.t.: a) t v s, b) t′ v s and c) P `CRWL e → s by
induction on the depth l of a CRWL -proof for e → t:
l = 0. Three possible CWRL-inference rules:

• BT. Then t = ⊥ and defining s = t′ we have: a) ⊥ v s, b) t′ v s and c)
P `CRWL e → s (by (R2)).

• RF. Then the proof for (R1) must be of the form X → X, and hence e = X

and t = X. Then t′ only can be X or ⊥ (otherwise no CRWL inference could

5

Caballero, Garćıa-Ruiz

be applied and (R2) would not hold). We define s as X and then: a) t v X b)
t′ v X c) P `CRWL e → s by (R1).

• DC. Then e = c, t = c, with c ∈ DC0. Then t′ must be either c or ⊥. In any
case defining s as c the result holds.

l > 0 There are three possible inference rules applied at the first step of the proof:
• DC. Then e = c e1 . . . em, t = c t1 . . . tm with c ∈ DCn ∪ FSn+1, m ≤ n.

Analogously t′ = c t1 . . . tm and the first inference rules of any proof for (R1) y
(R2) must be of the form:

(R1) :
e1 → t1 . . . em → tm

c e1 . . . em → c t1 . . . tm
(R2) :

e1 → t′1 . . . em → t′m
c e1 . . . em → c t′1 . . . t′m

The proofs for P `CRWL ei → ti and P `CRWL ei → t′i have a maximum depth of
l−1. Therefore by induction hypotheses exists si ∈ Cterm⊥ satisfying ti, t

′
i v si,

and P `CRWL ei → si for all 1 ≤ i ≤ m. Then defining s = c s1 . . . sm, t v s,
t′ v s hold and P `CRWL e → s with a proof starting with a DC inference.

• JN. Very similar to the previous case.
• AF. Then e is of the form f ēn with ei ∈ CTerm⊥ for i = 1 . . . n. Moreover n is

greater of equal to the program arity of f . Hence an AF inference must have been
applied at the first step of any proof of (R2). In each case a suitable instance
(I1) y (I2) must have been used. We call θ and θ′ to the substitutions associated
to the first and to the second instance respectively, θ, θ′ ∈ CSubst⊥.
The first inference step of each proof will be of the following form:

(1) :
e1 → t1θ, . . . , ek → tkθ, Cθ, rθ → a, a ek+1 . . . en → t

f e1 . . . ek ek+1 . . . en → t

(2) :
e1 → t′1θ′, . . . , ek → t′kθ′, C′θ′, r′θ′ → a′, a′ ek+1 . . . en → t′

f e1 . . . ek ek+1 . . . en → t′

with (k > 0), t, t′ 6= ⊥ and the rule instances:

I1: (f t1 . . . tk → r ⇐ C)θ ∈ [R]⊥ I2: (f t′1 . . . t′k → r′ ⇐ C ′)θ′ ∈ [R]⊥
Now we consider separately two cases: a) I1 e I2 correspond to the same program
rule, and b) each instance correspond to a different program rule. The first case
is easy to check and does not rely on the non-ambiguity criterion. For the sake
of the space we only include the proof of the case b).

Assume that I1, I2 are instances of two different program rules. By the
non-ambiguity criterion there exists γ=m.g.u. (f t̄k, f t̄′k), i.e. tiγ = t′iγ for
i = 1 . . . k and rγ = r′γ. Calling ui to tiγ = t′iγ, the rule instances can be seen
as: (f u1 . . . uk → r′′ ⇐ Cγ) and (f u1 . . . uk → r′′ ⇐ C ′γ). Now we must look
for some s ∈ CTerm⊥ such that: a) t v s, b) t′ v s and c) P `CRWL fēn → s

for some substitution θ′′. The proof of c) can be of one of these two forms

(4) :
e1 → u1θ′′, . . . , ek → ukθ′′, Cγθ′′, r′′θ′′ → a′′, a′′ ek+1 . . . en → s

f e1 . . . ek ek+1 . . . en → s

(5) :
e1 → u1θ′′, . . . , ek → ukθ′′, C′γθ′′, r′′θ′′ → a′′, a′′ ek+1 . . . en → s

f e1 . . . ek ek+1 . . . en → s

We observe that γ unifies the heads and fusions the right-hand sides, but it
doesn’t relation C y C ′. We consider the form (4) (the (5) is analogous). From

6

Caballero, Garćıa-Ruiz

the premises of (1) y (2) we know that P `CRWL ei → tiθ and P `CRWL ei → t′iθ
′

for i = 1 . . . k. By induction hypotheses exists si ∈ CTerm⊥ s.t.: a)tiθ v si, b)
t′iθ

′ v si, and c) P `CRWL ei → si. Since ti, t
′
i are unified by γ, we can apply

the Lemma 2.4. Then there exist substitutions θi which we can restrict to the
variables in ui s.t. uiθi = si. (u1, . . . , uk) is a linear tuple because (t1, . . . , tk)
and (t′1, . . . , t

′
k) are both linear. Then we can define a substitution θ′′ as:

θ′′(X) =

(
θi(X) if X ∈ var(ti, t

′
i) for some i, 1 ≤ i ≤ k

θ(X) otherwise

ensuring that there exist CRWL -proofs of ei → uiθ
′′ for all i = {1, . . . , k} in (4)

(this is because uiθi = uiθ
′′).

Checking that rest of the premises of (4) also have CRWL -proof requires similar
arguments.

2

The non-ambiguity condition characterizes a set of functions F as deterministic.
This is because the value of a function may depend on other functions, and in
general this dependence can be mutual. In practice the implementation starts with
an empty set F of non-ambiguous functions, adding at each step to F those functions
that satisfy the definition and that only depend on functions already in F . This is
done until a fix-point for F is reached.

Although most of the deterministic functions that occur in a program are non-
ambiguous as well, there are some functions which are not detected. This happens
for instance in the function f of following example: f 1 = 1 f 1 = g 1 g 1 = 1.
It would be useful to use additional determinism criteria, such as those based on
abstract interpretation proposed in [12], but the detection of deterministic function
will be still incomplete. For that reason the system allows the programmer to
distinguish deterministic functions annotating them by using --> instead of =, as
in the following example: f 1 --> 1 f 1 --> g 1 g 1 = 1,
which indicates that f is deterministic. The non-annotated functions like g will be
analyzed following the non-ambiguity criterion.

3 Pruning Deterministic Computations

In this section we present briefly the two different situations where the dynamic cut
can be introduced.

3.1 Deterministic Functions Defined through Overlapping Program Rules

Sometimes deterministic functions can be defined in a natural way by using over-
lapping rules. Consider for instance the two programs of Figure 1. Both programs
contain functions for computing arithmetic using Peano’s representation. The func-
tion toNat is used for easily converting positive numbers of type int to their Peano
representation. The only difference between P1 and P2 is the method for multiply-
ing numbers. The function multi at P2, which we have called ’classical’ reduces the
first argument before each recursive call until it becomes zero. The method multi
of P1, which we have called ’parallel’, reduces both arguments before the recursive
call. Observe that the first two rules of multi in P1 are overlapping. However it is
easy to check that it is a non-ambiguous and hence a deterministic function.

7

Caballero, Garćıa-Ruiz

% P1: ’Parallel’ multiplication

data nat = zero | s nat

add zero Y = Y

add (s X) Y = s (add X Y)

multi zero = zero

multi zero = zero

multi (s X) (s Y) = s (add X (add Y (multi X Y)))

power N zero = s zero

power N (s M) = multi N (power N M)

odd zero = false

odd (s zero) = true

odd (s (s N)) = odd N

toNat N = if (N==0) then zero

else s (toNat (N-1))

% P2: ’Classical’ multiplication

data nat = zero | s nat

add zero Y = Y

add (s X) Y = s (add X Y)

multi zero = zero

multi (s X) Y = add Y (add X Y)

power N zero = s zero

power N (s M) = multi N (power N M)

odd zero = false

odd (s zero) = true

odd (s (s N)) = odd N

toNat N = if (N==0) then zero

else s (toNat (N-1))

Fig. 1. Two methods for multiplying

X Y P1 P2

0 100000 0 0

0 50000 0 0

100 1000 2.7 2.7

400 400 4.1 4.1

1000 100 4.9

50000 0 0 3.5

100000 0 0

multi (toNat X) (toNat Y)

N P1 P2

104 0.7 0

105 6.1 0

106 60.0 0

107 0

odd (power zero (toNat N))

without dynamic cut

N P1 P2

104 0 0

105 0 0

106 0 0

107 0 0

odd (power zero (toNat N))

with dynamic cut

Fig. 2. Comparative tables

The first table at Figure 2 shows the time 4 required for computing the first
answer for goals of the form multi (toNat X) (toNat Y) == R in both programs.

The symbol means that the system has run out of memory for the goal. From
this data it is clear that the parallel multi of P1 behaves better than its classical
counterpart of P2. The reason is that in P1 the computation of multi reduces the
two arguments simultaneously saving both time and space. However this kind of
’parallel’ definition is not used very often in Functional-Logic Programming because
programmers know that overlapping rules can produce unexpected behaviors due to
the backtracking mechanism. Indeed using P1 a goal like multi zero zero == R has
two solutions, both giving R the value zero, instead of only one as expected (and
as the program P2 does). Such redundant computations can affect the efficiency of
other computations. The central table of Figure 2 contains the time required by
both programs for checking if the N-th power of zero is odd without the dynamic
cut optimization. The goal returns no in both cases as expected, but we observe
that now P1 behaves rather worse than P2, even running out of memory for large
enough numbers. This is because the subgoal power zero (toInt N) needs to compute
N multiplications, and in P1 this means N redundant computations. Thus using P1

without dynamic cut the goal odd (power zero (toInt N)) will check N times if zero

4 All the results displayed in seconds, obtained on a computer at 2.13 GHz with 1 Gb of RAM

8

Caballero, Garćıa-Ruiz

data nucleotides = adenine | guanine | cytosine | thymine

compatible adenine thymine = true

compatible thymine adenine = true

compatible guanine cytosine = true

compatible cytosine guanine = true

dna [] [] = true

dna [N1|R1] [N2|R2] = true ⇐= compatible N1 N2, (dna R1 R2)

dnaPart S1 S2 L = true ⇐= part P1 S1 L , part P2 S2 L, dna P1 P2

part X Y L = true ⇐= (U ++ X) ++ V == Y, length X == L

Fig. 3. Detecting DNA strands

is odd, while in P2 this is done only once. The dynamic cut solves this situation,
detecting that multi in P1 is a deterministic function and cutting the possibility
of using the second rule of multi if the first one has succeeded producing a result
(and satisfying some conditions explained below). The third table, at the right of
Figure 2 has been obtained after activating the dynamic cut. The problem of the
redundant computations has been solved. It is worth pointing out that the data of
the first table do not change after activating the optimization, because all the goals
considered produce only one answer, and the dynamic cut optimization only has
effect on the second and posteriors answers.

3.2 Existential variables in conditions

Consider now the program of Figure 3. It includes a simple representation of DNA
molecules, which are build by two chains of nucleotides. The nucleotides of the two
strands are connected in compatible pairs, defined in the program through function
compatible. The function dna detects if its two input parameters represent two
strands that can be combined in a DNA molecule. Function dnaPart checks if the
two input sequences S1 and S2 contain some subsequences P1 and P2 of length L
that can occur associated in a DNA molecule. This function relies in function part
which checks if the parameter X is a sublist of length L of the list Y. The functions
++ and length, represent respectively the concatenation of lists and the number of
elements in a list. Consider the following session in the system T OY :

Toy> dnaPart (repeat 1000 adenine) (repeat 1000 thymine) 5

yes. Elapsed time: 844 ms.

more solutions? y

yes. Elapsed time: 40390 ms.

The goal dnaPart (repeat 1000 adenine) (repeat 1000 thymine) 5 asks if in two strands
of 1000 nucleotides of adenine and thymine respectively it is possible to find two
subsequences of 5 nucleotides, one from each strand, which can occur associated in
a DNA molecule. The answer given by the system after 0.8 seconds is yes (actually
all the subsequences of n elements of the first strand are compatible with all the
subsequences of n elements of the second strand). If the user asks for a second
answer, the same redundant answer yes is obtained after more than 40 seconds. The
second answer is useless because it doesn’t provide new information, and greatly
affects the efficiency. It can be argued that there is no point in asking for a second

9

Caballero, Garćıa-Ruiz

answer after the first, but this situation can occur as subcomputations of a bigger
computation and cannot be avoided in general.

Examining the code we find out easily the source of the redundant computation:
the condition of function part includes two existential variables U and V. When the
user asks for more solutions the backtracking mechanism looks for new values of
the variables satisfying the conditions. But this is unnecessary because the rule
already has returned true and cannot return any new value. The dynamic cut will
avoid this redundant computation. Here is the same goal running after activating
the dynamic cut optimization in T OY :

Toy>dnaPart (repeat 1000 adenine) (repeat 1000 thymine) 5

yes. Elapsed time: 844 ms.

more solutions ? y

no. Elapsed time: 0 ms.

Now the system detects automatically that there are no more possible solutions
after the first one, reducing the 40 seconds to 0. The interested reader can find in [4]
more experimental results. The experiments in that paper were tested introducing
manually the code for the dynamic cut before the optimization was part of the
system. However the results have been confirmed by the current implementation.

3.3 Dynamic conditions for the cut

From the previous examples one could consider that the cut can be introduced safely
in the code of functions multi and part without taking into account any run-time
test. But the cut also depends on dynamic conditions. There are two situations
that must be taken into account before applying the cut:

i) Variable bindings.
Consider the goal: multi X zero == R, with X a logical variable. Using the program
P1 of Figure 1 this goal produces two answers: { X 7→zero, R7→zero } and { R7→zero
}. The first answer is obtained using the first rule for multi and the second answer
through the second rule. Introducing a cut after the first answer would be unsafe;
the second answer is not redundant, but gives new information w.r.t. the first one.
As it includes no binding for X it can be interpreted as ’for every X, the equality
multi X zero == zero holds’, and therefore subsumes the first answer.

ii) Non deterministic functions computed.
Suppose we include a new function zeroOrOne in the program P1 of Figure 1 defined
as: zeroOrOne = zero zeroOrOne = s zero

Then a goal like multi zeroOrOne (s zero) == R will return two answers: { R 7→
zero } and { R 7→ s zero }. Introducing the cut after the first answer would be
again unsafe. But in this case it is not because it prevents the use of the second
rule, but because it would avoid the backtracking of the non-deterministic function
zeroOrOne that leads to the application of the third rule of multi, yielding the second
answer.

Therefore the cut must not take place if after obtaining the first result of the de-
terministic function any of the variables in the input arguments has been bound or a
non-deterministic function has been computed. As we will see in the following para-
graph the implementation generates a dynamic test for checking these conditions

10

Caballero, Garćıa-Ruiz

before introducing the cut.

4 Implementing the Dynamic Cut

4.1 Compiling programs into Prolog

The T OY compiler transforms T OY programs into Prolog programs following ideas
described in [8]. A main component of the operational mechanism is the compu-
tation of head normal forms (hnf) for expressions. The translation scheme can be
divided into three phases:

1) Higher order T OY programs are translated into programs in first order syntax.

2) Function calls f(e1, . . . , en) occurring in the first order T OY program rules are
replaced by Prolog terms of the form susp(f(e1, . . . , en), R, S) called suspensions.
The logical variable S is a flag which is bound to a concrete value, say hnf, once the
suspension is evaluated. R contains the result of evaluating the function call. Its
value is meaningful only if S==hnf holds.

3) Finally the Prolog clauses are generated, adding code for strict equality and hnf
(to compute head normal forms). Each n-ary function f is translated into a Prolog
predicate f(X1, . . . , Xn,H). When computing a hnf for an unevaluated suspension
susp(f(X1,. . . ,Xn),R,S), a call f(X1,. . . ,Xn,H) will occur in order to obtain in H the
desired head normal form.

We are particularly interested in the third phase (code generation), since it will be
affected by the introduction of dynamic cuts. Before looking more closely at this
phase we need to introduce briefly our notation for definitional trees.

4.2 Definitional Trees in T OY

Before generating the code for any function the compiler builds its associated def-
initional tree. In our setting the definitional tree dt of a function f , can be of one
of the following three forms:

• dt(f) = f(t̄n) → case X of 〈c1(Xm1) : dt1; . . . ; ck(Xmk
) : dtk〉, where X is the

variable at position u in f(t̄n) and c1 . . . ck are constructor symbols, with dti a
definitional tree for i = 1 . . . k.

• dt(f) = f(t̄n) → or 〈dt1 | . . . | dtk〉, with dti a definitional tree for i = 1 . . . k.
• dt(f) = f(t̄n) → try (r ⇐ C), with f t̄n = r ⇐ C corresponding to an instance

of a program rule for f .

In each case we say that the tree has a case/or/try node at the root, respectively.
A more precise definition together with the algorithm that produces a definitional
tree from a function definition can be found in [8]. The only difference is that we do
not allow ’multiple tries’, i.e. try nodes including several program rules, replacing
them by or nodes with multiple try child nodes, one for each rule included in the
initial multiple try. The tree obtained by this modification is obviously equivalent
and will be more suitable for our purposes. As an example of a definitional tree,
consider again the definition of function multi in the program P1 of Figure 1.

11

Caballero, Garćıa-Ruiz

Its definitional tree, denoted as dt(multi), is defined in T OY as:

dt(multi) = multi(A,B)→ or 〈
multi(A,B)→ case A of

〈 zero : multi (zero, B) → try (zero) % Rule 1

; s(X) : multi (s(X),B) → case B of

〈 s(Y) : multi (s(X), s(Y)) → try (s (add X (add Y (multi(X,Y))))) 〉 % Rule 3

| multi(A,B)→ case B of 〈 zero: multi (A,zero) → try (zero) 〉 % Rule 2

4.3 Definitional trees with cut

From the definitional tree dt of each function the T OY system generates a defi-
nitional tree with cut, dtc. Definitional trees with cut have the same structure as
usual definitional trees. The only difference is that they rename some or and try
nodes as orCut and tryCut, respectively. We define a function Γ transforming a def-
initional tree dt into its corresponding definitional tree with cut straightforwardly
by distinguishing cases depending on the root node of dt:

• Γ(f(t̄n) → case X of 〈c1(Xm1) : dt1; . . . ; ck(Xmk
) : dtk〉) =

f(t̄n) → case X of 〈c1(Xm1) : Γ(dt1); . . . ; ck(Xmk
) : Γ(dtk)〉

• Γ(f(t̄n) → or〈dt1 | . . . | dtk〉) =
f(t̄n) → orCut 〈Γ(dt1) | . . . | Γ(dtk)〉, if f is deterministic.

• Γ(f(t̄n) → or〈dt1 | . . . | dtk〉) =
f(t̄n) → or 〈Γ(dt1) | . . . | Γ(dtk)〉, if f is non-deterministic.

• Γ (f(t̄n) → try (r ⇐ C) = f(t̄n) → tryCut (r ⇐ C) if some existential variable
occurs in C (i.e. some variable occurs in C but not in the rest of program rule).

• Γ (f(t̄n) → try (r ⇐ C) = f(t̄n) → try (r ⇐ C) if no existential variable occurs
in C.

For instance the dt of function multi displayed above is transformed into the
following definitional tree with cut dct (denoted dtc(multi)):

dtc(multi) = multi(A,B)→ orCut 〈
multi(A,B)→ case A of

〈 zero : multi (zero, B) → try (zero) % Rule 1

; s(X) : multi (s(X),B) → case B of

〈 s(Y) : multi (s(X), s(Y)) → try (s (add C (add D (multi(C,D))))) 〉 % Rule 3

| multi(A,B)→ case B of 〈 zero: multi (A,zero) → try (zero) 〉 % Rule 2

Notice that the only difference corresponds to the root, which has been transformed
into a orCut node because multi is a deterministic function.

4.4 Generating the code

Now we can describe the function prolog(f, dtc) which generates the code for a
function f from its definitional tree with cut dtc. The function definition depends
on the node found at the root of dtc. There are five possibilities:
Case 1. dtc = f(s̄) → case X of 〈c1(Xm1) : dtc1; . . . ; cm(Xmk

) : dtcm〉. Then:

12

Caballero, Garćıa-Ruiz

prolog(g, dtc) = {g(s̄, H) : − hnf(X, HX), g′(s̄σ,H).} ∪
prolog(g′, dtc1) ∪ . . . ∪ prolog(g′, dtcm)

where σ = X/HX and g′ is a new function symbol. The first call to hnf ensures
that the position indicated by X is already in head normal form, and therefore can
be used in order to distinguish the different alternatives.

Case 2. dtc = f(s̄) → or〈dtc1 | . . . | dtcm〉. Then:

prolog(g, dtc) = {g(s̄, H) : − g1(s̄, H).} ∪ . . . ∪ {g(s̄, H) : − gm(s̄, H).} ∪
prolog(g1, dtc1) ∪ . . . ∪ prolog(gm, dtcm)

where g1, . . . , gm are new function symbols. In this case each new function symbol
represents one of the non-deterministic choices.

Case 3. dtc = f(s̄) → orCut〈dtc1 | . . . | dtcm〉. Then

prolog(g, dtc) = {g(s̄, H) :−varlist(s̄, Vs), g′(s̄, H),

(checkvarlist(Vs), ! ; true). } ∪
{g′(s̄, H) : −{g1(s̄, H).} ∪ . . . ∪ {g′(s̄, H) : − gm(s̄, H).} ∪
prolog(g1, dtc1) ∪ . . . ∪ prolog(gm, dtcm)

where g′, g1, . . . , gm are new function symbols. Observe the differences with the
case 2:

• A new function g′ is used as an intermediate auxiliary function between g and
the non-deterministic choices.

• g starts calling a predicate varlist. This predicate, whose definition is tedious but
straightforward, returns in its second parameter Vs a list containing all the logical
variables in the input parameters, including those used as flags for detecting the
evaluation of suspensions of non-deterministic functions.

• After g′ succeeds, i.e. after an or-branch has produced a result, the test for
the dynamic cut is performed. This test, represented by predicate checkvarlist,
checks if any of the variables in the list produced by varlist has been bound.
This will mean that either an input logical variable has been bound or a non-
deterministic function has been evaluated. In any of these cases the cut is avoided.
Otherwise the dynamic cut, which is implemented as an ordinary Prolog cut, is
safely performed. The definition of checkvarlist is simple:

checkVarList([]).

checkVarList([X|Xs]):- var(X), \+varInList(X,Xs), checkVarList(Xs).

The literal \+varInList(X,Xs), checks if the variable X occurs twice in the list,
detecting bindings among variables of the list.

Case 4. dtc = try (e ⇐ l1 == r1, . . . , ln == rn). Then

prolog(g, dtc) = { g(s̄, H) : − equal(l1, r1), . . . , equal(ln, rn), hnf(e,H). }
If all equalities in the conditions are satisfied the program rule returns the head

13

Caballero, Garćıa-Ruiz

normal form of its right-hand side e.

Case 5. dtc = tryCut (e ⇐ l1 == r1, . . . , ln == rn). Then

prolog(g, dtc) = {g(s̄, H) :−varlist((s̄, e), Vs),

equal(l1, r1), . . . , equal(ln, rn),

(checkvarlist(Vs), ! ; true),

hnf(e,H).}
This case is similar to the case of the orCut. The main difference is that in this
case we also collect the possible new variables of the right-hand side, because if the
condition binds any of them the cut must be discarded.

4.5 Examples

Now we show the Prolog code generated by T OY for some of the function examples
presented through the paper:

• Prolog code for function part of Figure 3:
part(A, B, C, true):- varList([A, B, C], Vs),

equal(susp(++, [susp(++, [D,A]),J]),B),
equal(susp(length, [A]), C),
(checkVarList(Vs), !; true).

This corresponds to the implementation of a tryCut node. In this example
varList only looks for variables and non-deterministic functions in the parameters
A, B and C, because the right-hand side of this rule is the ground term true.

• Prolog code for function multi of Figure 1
multi(A, B, H):- varList([A,B], Vs),

multi’(A, B, H),
(checkVarList(Vs), ! ; true).

multi’(A, B, H):- hnf(A, F),
multi’_1(F, B, H).

multi’(A, B, zero):- hnf(B, zero).

multi’_1(zero, B, zero).
multi’_1(s(X), B,
s(susp(add,[X,susp(add,[Y,susp(multi,[X,Y])])]))):- hnf(B, s(Y)).

The code of this example corresponds to the implementation of an orCut node.
The two branches are represented here by the two clauses for multi′ (correspond-
ing to function g′ in the case 3 of the previous subsection). The cut is introduced
if the first alternative, which corresponds to a case node with two possibilities,
succeeds.

5 Conclusions

In this paper we have presented the implementation of the dynamic cut optimization
in the Functional-Logic system T OY . The optimization improves dramatically the
efficiency of the computations in the situations explained in the paper. Moreover,
we claim that in practice it allows the use of some elegant and expressive function
definitions that were disregarded due to their inefficiency up to now.

The cut is introduced automatically by the system following the next steps:

14

Caballero, Garćıa-Ruiz

(i) The deterministic functions of the program are detected using the non-
ambiguity criterion. The correctness of the criterion is ensured by theorem
2.6. Also the user can indicate explicitly that any function is deterministic.

(ii) The definitional tree associated to each program function is examined. The
or nodes occurring in deterministic functions are labeled during this process
as or-cut nodes. Also the try nodes corresponding to program rules including
existential variables in the conditions are labeled as try-cut nodes.

(iii) During the code generation the system will generate the dynamic cut code
for or-cut and try-cut nodes. However the cut only will be performed if the
dynamic conditions explained in subsection 3.3 are fulfilled.

We think that a similar scheme might also be used for incorporating the dynamic
cut to the Prolog-based implementations of the Curry language [6].

Currently the dynamic cut must be turned on in T OY by typing the command /cut
at the prompt. However, we have checked that the optimization produces almost
no overhead in the cases where it cannot be applied, and we plan to provide it
activated by default in the future versions of the system.

References

[1] Antoy, S., Definitional trees, in: Int. Conf. on Algebraic Logic Programming (ALP’92), number 632 in
LNCS (1992), pp. 143–157.

[2] Antoy, S., R.Echahed and M. Hanus, A needed narrowing strategy, Journal of the ACM 47 (2000),
pp. 776–822.

[3] Caballero, R. and F. López-Fraguas, Dynamic-cut with definitional trees, in: Proceedings of the 6th
International Symposium on Functional and Logic Programming, FLOPS 2002, number 2441 in LNCS
(2002), pp. 245–258.

[4] Caballero, R. and F. LÃpez-Fraguas, Improving deterministic computations in lazy functional logic
languages, Journal of Functional and Logic Programming 2003 (2003).

[5] GonzÃ¡lez-Moreno, J., M. HortalÃ¡-GonzÃ¡lez, F. LÃpez-Fraguas and M. RodrÃguez-Artalejo, An
approach to declarative programming based on a rewriting logic, The Journal of Logic Programming 40
(1999), pp. 47–87.

[6] Hanus, M., Curry: An Integrated Functional Logic Language (version 0.8.2. march 28, 2006), Available
at: http://www.informatik.uni-kiel.de/ curry/papers/report.pdf (2006).

[7] Henderson, F., Z. Somogyi and T. Conway, Determinism analysis in the mercury compiler (1996).
URL citeseer.ist.psu.edu/henderson96determinism.html

[8] Loogen, R., F. López-Fraguas and M. Rodŕıguez-Artalejo, A demand driven computation strategy for
lazy narrowing, in: Int. Symp. on Programming Language Implementation and Logic Programming
(PLILP’93), number 714 in LNCS (1993), pp. 184–200.

[9] Loogen, R., F. López-Fraguas and M. Rodŕıguez-Artalejo, Toy: a multiparadigm declarative system, in:
Int. Symp. RTA’99, number 1631 in LNCS (1999), pp. 244–247.

[10] Loogen, R. and S. Winkler, Dynamic detection of determinism in functional-logic languages, in: Int.
Symp. on Programming Language Implementation and Logic Programming (PLILP’91), number 528
in LNCS (1991), pp. 335–346.

[11] Loogen, R. and S. Winkler, Dynamic detection of determinism in functional logic languages,
in: J. Maluszynski and M. Wirsing, editors, Programming Language Implementation and Logic
Programming: Proc. of the 3rd International Symposium PLILP’91, Passau, Springer, Berlin,
Heidelberg, 1991 pp. 335–346.

[12] Peña, R. and C. Segura, Non-determinism analyses in a parallel-functional language, Journal of Logic
Programming 2004 (2005), pp. 67–100.

[13] Sawamura, H. and T. Takeshima, Recursive Unsolvability of Determinacy, Solvable Cases of
Determinacy and Their Applications to Prolog Optimization, in: Proceedings of the Symposium on
Logic Programming, 1985, pp. 200–207.

15

