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Abstract Glass-box testing tries to cover paths through the tested code, based on a given criterion such as def-use chain
coverage. When generating glass-box test cases manually, the user is likely to overlook some def-use chains. Moreover
it is difficult to find suitable test cases which cause certain def-use chains to be passed. We have developed a tool which
automatically generates a system of test cases for a piece of Java byte code, which ensures that all def-use chains are
covered. The tool consists of a symbolic Java virtual machine (SJVM) and a system of dedicated constraint solvers. The
SJVM uses the constraint solvers in order to determine which branches the symbolic execution needs to consider. A
backtracking mechanism is applied in case that several branches remain feasible. Thus we have applied implementation
techniques known from functional logic and constraint programming to handle the considered applications problems.

1 Introduction

As quality standards for software systems are permanently increasing, software testing becomes a
more and more important part of the software development process. Since software testing is time
consuming and costly and tests have to be repeated several times, much effort has been invested
in the automation of testing. As a result of these endeavors many regression test suites have been
implemented. Even though these regression test suits assist a developer performing already known
tests on his code, the generation of new test cases remains up to the user.

In the literature, testing is divided into black-box testing and glass-box testing. While black-box
testing derives test cases from the specification of the user requirements, glass-box testing is based
solely on the code and is hence adapted exactly to the way a given problem will be solved by the
program. Here, we will focus on glass-box testing.

Glass-box testing is particularly suited to unit testing and to testing of algorithmically challeng-
ing parts of software systems. Unfortunately generating an exhaustive set of test cases based on a
given coverage criterion as the def-use chain coverage is then challenging and error-prone, too.

In order to simplify glass-box testing, we have developed a tool that automates the generation of
(mostly complete) sets of test cases satisfying a selectable testing criterion. Each test case consists
of a set of constraints that describe the values for the input parameters leading to the pass through the
test case in a general way, a concrete instance of values satisfying these constraints, a description
of the path that will be taken during the runtime of the test, and the symbolic and the real result
that will be expected at the end of the run. The testing criterion discussed in this paper will be the
def-use chain coverage, which roughly ensures that all values defined somewhere in the program
do not cause problems at places, where they are used. However the tool is also able to support
other coverage criteria like statement coverage, branch coverage, or condition coverage and offers
an open interface for the integration of further coverage criteria. Our tool is implemented in Java.

In order to identify the paths that may be followed by a real Java virtual machine [Su03] as
precisely as possible, we have designed our tool as a symbolic Java virtual machine that processes
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Java byte code. The difference of our SJVM to an original Java Virtual Machine [LY99] is that the
value of a variable is not just a numerical value but an expression on some input variables. Prior
to the symbolic execution, our tool analyzes the byte code in order to determine all def-use chains.
During the symbolic execution, the SJVM generates at each branching instruction (e.g. a conditional
jump) a constraint corresponding to the branch taken and propagates it to a constraint solver. If the
overall system of constraints has no more solutions, or if all definitions and uses in the considered
branch have been processed, the SJVM backtracks to the latest branching instruction and continues
with an alternative branch, much like the Warren Abstract Machine known from Prolog [Wa83].
When the end of a path has been reached without any conflicts, it is up to the constraint solver to
calculate one particular solution of the collected set of constraints, and to generate a corresponding
test case. This can be added to a regression test suite.

As already mentioned, the main difficulty of the approach above is checking, whether the col-
lected constraints remain solvable, or if they are already contradicting each other. For this purpose
we have implemented a dedicated constraint solver, which is integrated into our SJVM and is con-
nected to the symbolic execution engine by a special constraint solver manager that administrates
the gathering of new constraints and facilitates an incremental growth and solving of the constraints
(see Fig. 1). The SJVM has been presented in [ML03] and will not be explained in detail here. We
will rather focus on the system of constraint solvers.

This paper is structured as follows. The tasks and the functionality of the constraint solver
manager are described in Section 2. Section 3 explains how linear constraints will be handled,
while Section 4 shows the treatment of non-linear constraints. Extracts of our experimental results
and some known limitations of our approach will be discussed in Section 5. Related work and our
conclusions can be found in Section 6 and 7, respectively.

2 The Constraint Solver Manager

The constraint solver manager (CSM) acts as an interface between the symbolic execution engine
of the SJVM and the different constraint solvers we have implemented to handle different kinds
of constraints. Since the constraints produced by the execution engine arrive incrementally at the
CSM, it has to store each of them for further calculations. As the backtracking mechanism of our
tool also guarantees that the latest constraints added to the system are the first that will be removed
again, the CSM needs a constraint stack to maintain them.

Moreover, the CSM analyzes the constraints and transforms them to some kind of normal form.
Additionally, it selects the most appropriate constraint solver for each system of constraints and
distributes each constraint to the corresponding constraint solver, in case that the overall system of
constraints consisted of several independent subsystems. At present only a small set of constraint
solving algorithms are implemented, but the CSM has an easily implementable interface for the
integration of further, more powerful algorithms.

One step of the normalization of constraints is that inequalities of the form exp1 �= exp2 are
transformed to an easier manageable system of inequalities exp1 < exp2∨exp1 > exp2. Moreover,
fractions are removed by expanding and extending the constraints as shown in Figure2. Here it is
important to notice that for each denominator it has to be examined, in which situations it will have
the value 0, because then the occurrence of an ArithmeticExcpetion has to be considered (in
Figure 2 this is represented by constraint (1)). Since multiplying inequalities with negative factors
lets the comparison operator switch its direction, the original constraint has to be split into two new
systems of constraints (line (2) and (3) of the example; all connected by ∨). These three systems
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Figure 1. Symbolic Java Virtual Machine
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1 + x = 0 (1)
1 ≥ a + ax ∧ 1 + x > 0 (2)
1 ≤ a + ax ∧ 1 + x < 0 (3)

Figure 2. Removal of fractions for 1
1+x

≥ a

will be successively considered using a backtracking mechanism. Thus, one system at a time will
be passed on to an appropriate constraint solver.

Removing divisions also implies a consideration of the data types of the involved variables.
While the types float and double introduce few difficulties, integer divisions (for the Java types
byte, char, short, int, and long) have to be replaced in a special way. For example the equation
a/5 = 4 containing the double variable a will be transformed to a = 20.0, while the same equation
with an integer division has to be transformed to the set of constraints a = 20 + r ∧ r ≥ 0∧ r ≤ 4.
Possible values for a will then be 20, 21, 22, 23, and 24.

The resulting system of purely polynomial equations and inequalities is then analyzed, in or-
der to check whether they can be broken up into smaller, independently solvable systems. This is
an interesting question, because maybe some parts of the system then can be handled by the more
efficient linear constraint solvers, while only those parts that are really depending on nonlinear
equations are passed on to the more complex nonlinear solvers. The next benefit of this approach
concerns the ability of handling incrementally growing systems of constraints. When a new equa-
tion or inequality arrives, it has to be checked, which constraints are depending on the variables
contained in the new equation or inequality and only for these constraints a new solution has to
be computed. All the other constraints that are not depending on the variables of the new equation
are left untouched and their solution calculated before can be reused. Because calculating solutions
for complex systems of equations and inequalities can be very time consuming, the CSM firstly
verifies if the existing solution of the previous calculations satisfies the new equation too. Only if
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the old solution does not fit any longer, the computation of a new tuple of values will be initiated.
Nevertheless the new constraint has to be added to the constraint stack in both cases.

The next and maybe most important job of the CSM is the analysis of the constraints and the
choice of the best constraint solver for the given problem. For this purpose the constraints are
divided up into several categories, each having a dedicated constraint solver.

Pure boolean constraints consisting only of the boolean constants true and false, boolean
variables and the boolean Java operations & (and), | (or), ! (not),ˆ(xor), and the comparison op-
erators == (equal) and != (not equal) are solved by a simple backtracking mechanism known from
(functional) logic programming languages like Prolog [SS94] or Curry [HK95].

The most important decision criterion of the arithmetic constraints is the linearity or nonlinearity
of the system. Further criteria are the existence of weak (≤, ≥) or strict (<, >) inequalities or of
variables with integer data types (byte, char, short, int, or long).

Linear equations consisting only of floating-point data types (float and double) can easily
be solved using Gaussian elimination, while inequalities can be solved using a variable elimination
solver, parts of the simplex algorithm [BJ90] or a combination of them. The simplex algorithm
can be enhanced by a branch-and-bound add-on or total enumeration, which enables the solution
of linear (mixed) integer problems [BJ90,GN72]. These solvers are already included in the current
version of our test tool and have proven to be reliable.

To explain the functionality of the whole test tool and especially of some of the mentioned
solvers, the analysis of the short Java method gcd that calculates the greatest common divisor of
two positive integer numbers will be used as a running example. The source code of the Java method
is shown in Figure 3.

public static double gcd (double a, double b){
while (a > 0){

if (a < b){
double h = a;
a = b;
b = h;

}
a = a % b;

}
return b;

}

Figure 3. Java source code of the greatest common divisor method

Since our tool operates on the byte code due to several reasons (e.g. efficiency and support of
different programming languages (Java 1.4, Java 1.5, Pizza)) the source code of Figure3 has to be
compiled to the form presented in Figure 4. Starting from that byte code our test tool offers the
developer the choice of different testing criteria. In our example we decided to select the def-use
chain coverage. Def-use chains [Be90] are defined as follows:

def(S) := {X| instruction S (re)defines X}
use(S) := {X| instruction S uses X}

Then [X,S, S′] is a def-use chain for variable X, if X ∈ def(S)∩use(S′) but X /∈ def(S′′) for all
instructions S′′ passed on some path from S to S′. We will indicate S and S′ by the corresponding
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0 goto 15 11 dload_0 // a
1 dload_0 // a 12 dload_1 // b
2 dload_1 // b 13 drem // a%b
3 dcmpg 14 dstore_0 // a=a%b
4 ifge 11 // a<b? 15 dload_0 // a
5 dload_0 // a 16 dconst_0 // 0
6 dstore_2 // h=a; 17 dcmpl
7 dload_1 // b 18 ifgt 1 // a>0?
8 dstore_0 // a=b; 19 dload_1 // b
9 dload_2 // h 20 dreturn // return b

10 dsotre_1 // b=h;

Figure 4. Java byte code of the greatest common divisor method

byte code line numbers. Taking into account that according to the Virtual Machine Specification
[LY99] the SJVM puts the input parameters of the gcd-method on top of the methods local operand
stack as variables 0 and 1 (which is annotated with VM in the def-use chains), the method contains
the following set of def-use chains: [a,VM,1], [a,VM,5], [a,VM,11], [a,VM,15], [a,8,11], [a,14,1],
[a,14,5], [a,14,11], [a,14,15], [b,VM,2], [b,VM,7], [b,VM,12], [b,VM,19], [b,10,2], [b,10,7], [b,10,12],
[b,10,19], and [h,6,9].

To cover all these def-use chains several test cases have to be generated, each causing a dif-
ferent path through the code to be taken and requiring special values as input for the method. The
computation of these values will be discussed in the following sections.

3 Solving Linear Constraints

Even though solving linear constraints seems to be one of the easier manageable problems during
the generation of test cases and lots of algorithms concerning this subject have been discussed in
the literature, many of the known algorithms may be applied just to special subsets of the problems
that appear in practice. While Gaussian elimination is working fine on systems of linear equations,
the first phase of the Two-Phase Simplex Algorithm (leading to an initial basic feasible solution)
[BJ90] are utilized for systems of linear equations and weak inequalities (≤, ≥). Although some
variations of the simplex algorithm exists that allow e.g. the additional handling of negative vari-
ables, the treatment of strict inequalities (<, >) is not sufficiently supported. For this reason we
added an additional, more flexible algorithm to our test tool based on the Fourier-Motzkin elimina-
tion procedure [DE73,Ap03]. This elimination procedure iteratively removes a selected variable by
isolating it in each inequality, combining these new inequalities and replacing the whole system of
inequalities by a new system that does not contain the selected variable. It has been shown that the
new system has a solution if and only if the original system has a solution, too (the two systems are
also called equisatisfiable). This approach will be repeated until a system of inequalities remains
that contains a set of restrictions to only one variable, for which a solution can easily be found.
Substituting the solution for the last variable into the previously build systems leads then iteratively
to a complete solution of the whole original problem.

More detailed the approach works as follows. Firstly all equations have to be removed from
the system of equations and inequalities. This can be done by isolating an arbitrary variable of the
first equation that is contained in the system of constraints. This variable can now be substituted in
all equations and inequations by the right hand side of the transformed equation without varying
the solution space of the remaining variables. This step will be repeated until the constraints are
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free from any equations. If the original equations contain both integer and noninteger variables it is
recommendable to remove the noninteger variables first.

Then the m inequalities with n variables have to be transformed to a system of inequalities of
the form shown in (1). The operator � stands for one of the operators ≤ and < in the following:

a11x1 + · · · + a1nxn � b1
...

...
am1x1 + · · · + amnxn � bm

(1)

Choosing x1 as the first variable to eliminate lets us split the set I = {1, ...,m} of indices for the
inequalities into I = I− ∪ I0 ∪ I+:

I− = {i ∈ I|ai1 < 0}
I0 = {j ∈ I|aj1 = 0}
I+ = {k ∈ I|ak1 > 0}

(2)

The classification of the inequalities into the sets I− and I+ assists us to transform the inequalities
of system (1) into the form (3):

a−1
j1 bj − a−1

j1 aj2x2 − · · · − a−1
j1 ajnxn � x1 ∀j ∈ I−

x1 � a−1
i1 bi − a−1

i1 ai2x2 − · · · − a−1
i1 ainxn ∀i ∈ I+

(3)

Combining each of the inequalities with the indices in I− with each of the inequalities with indices
in I+ by the isolated variable x1 using the transitivity of the ≤ and < relations leads to the new
system (4):

n∑
j=2

(a−1
k1 akj − a−1

l1 alj)xj � a−1
k1 bk − a−1

l1 bl ∀k ∈ I+, l ∈ I−

n∑
j=2

aijxj � bi ∀i ∈ I0

(4)

It is obvious that the new system consists only of n− 1 variables and |I0|+ |I−| · |I+| inequalities.
This step has to be repeated until only one variable is left or some constraint becomes obviously
contradictory. Here it is also recommendable to begin eliminating the noninteger variables so that
after some eliminations a system of inequalities remains that does only contain integer variables1.
Together with the integer equations noted before, the generated weak inequalities over integer vari-
ables may now be solved by the branch and bound extended simplex algorithm or total enumeration.

Although the number of inequalities grows in the worst case exponentially in the number of
variables, in our application this is no problem, since it is usually no problem to find a variable for
which one of the sets I+ or I− and thus the total number of inequalities in the next step become
relatively small. Note that if I− or I+ are empty, it is trivial to find a solution. Additionally the
number of input parameters of typical Java methods tends to be small.

Taking our example of the gcd-method described earlier, the Fourier-Motzkin elimination will
be used by the CSM for situations, where the SJVM wants to know, what branches of the if-
instruction in the byte code on line 4 are still reachable, after the ”true branch” of the conditional
jump instruction on line 18 has been taken positive. Here the simple inequalities a > 0 ∧ a < b
will have to be handled. Since this is a trivial problem for the elimination algorithm, we make the
example a little bit more interesting by adding the conditions a ≤ 100 and b ≤ 100.

1 This mixture of possibly strict and weak inequalities can then easily be transformed into a system of weak inequalities
by subtracting the greatest common divisor of all coefficients and the right hand side of each inequality from their right
hand sides.
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The set of inequalities gathered so far by the CSM will then be:

a > 0 � −a < 0 (1)
a < b � a − b < 0 (2)
a ≤ 100 � a ≤ 100 (3)
b ≤ 100 � b ≤ 100 (4)

Selecting a as the next variable to eliminate lets us build the three sets of indices I− = {1},
I0 = {4}, and I+ = {2, 3}. Preparing the inequalities (1), (2), and (3) for the later elimination of a
leads to:

0 < a
a < b
a ≤ 100

Combining them pairwise and adding the inequalities of I0 produces the 1+1·2 = 3 inequalities
with b as the only contained variable:

0 < b 0 < 100 b ≤ 100

The constraint solver is now able to detect that there are no conflicting constraints and that the
value of the variable b has to be selected from the interval ]0; 100]. Selecting b = 50 randomly and
inserting this value into the original system results in:

−a < 0 a < 50
a ≤ 100 50 ≤ 100

Thus the interval for the variable a is ]0; 50[. The information, the CSM can pass on to the
symbolic execution engine of the SJVM is that the considered path of the symbolic execution can
still be reached and possible values for a test case leading to that path can e.g. be a = 40 and b = 50.

4 The Nonlinear Constraint Solver

For nonlinear constraints we offer a symbolic approach based on the Buchberger algorithm [BW93]
[ML03] and a numerical approach. The Buchberger algorithm has the disadvantage that it is doubly
exponential and that there is no systematic approach to find one concrete solution which could be
used to generate a test case in case that there are infinitely many solutions. In the present paper we
will focus on our numeric approach, a bisection algorithm, which successively divides the search
space looking for solutions of the considered system of polynomial equations and inequalities.

Returning to our running example, the gcd-method, let us consider the constraints gathered
when for the first three if-instructions of the byte code the true-branch was selected and for the fol-
lowing two if-instructions the conditions were assumed to be false. This leads to a test case covering
the def-use chains [a,VM,1], [a,VM,11], [a,VM,15], [a,8,11], [a,14,1], [a,14,5], [a,14,15], [b,VM,2],
[b,VM,7], [b,VM,12], [b,10,12], [b,10,19], and [t,6,9]. The result of the symbolic execution in that
case is (a mod b) and the gathered constraints are:

a > 0 a mod b > 0 b mod (a mod b) ≤ 0
a ≥ b a mod b < b

Because many algorithms can not handle constraints containing modulo operations directly, the
disturbing mod-operations will be eliminated first by inserting additional variables:
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a > 0 x > 0 y ≤ 0
a ≥ b a = mb + x b = nx + y

m ≥ 0 x ≥ 0 x ≤ b − 1
n ≥ 0 y ≥ 0 y ≤ x − 1

Here it is easy to see, that y has to be zero and that the whole problem is obviously nonlinear.
Substituting b, the equation for the variable a will be transformed to a = m ·n ·x+m ·y +x, which
is a polynomial equation of third degree and thus finding solutions for it is a nontrivial problem.

The constraints in our setting are conjunctions of atomic polynomial constraints. Disjunctions
are not considered because the solver manager handles them via backtracking. Each atomic poly-
nomial constraint has the form p ♦ 0 , where p is a polynomial and ♦ ∈ {=, <}. Notice that for the
further reasoning it is not necessary to include weak inequalities, since they can be decomposed in
the disjunction of an equality and a strict inequality, and that constraints of the form p > 0 can be
replaced by −p < 0.

After transforming the example we get:

−a < 0 −n < 0 b − nx = 0
b − a < 0 a − mb − x = 0 x − b + 1 < 0
−m < 0 −x < 0 1 − x < 0

Each variable in the constraint has some predefined domain, represented by the different types
used in Java for representing numbers (byte, char, short, int, long, float, double). Given a
variable x we represent the set of values of its domain by dom(x). In our example we would expect
a, b, and x to be double values and, m and n int values.

Let xn be the number of different variables in a constraint ϕ, ε ∈ R+, and cn ∈ R
n. Then we

say:

• cn ε-satisfies an atomic constraint of the form p < 0 if p(cn) < −ε and each ci ∈ dom(xi)
for i = 1 . . . n.

• cn ε-satisfies an atomic constraint of the form p = 0 if −ε ≤ p(cn) ≤ ε and each ci ∈
dom(xi) for i = 1 . . . n.

• cn ε-satisfies a constraint ϕ if it ε-satisfies all the atomic constraints in ϕ.

• cn satisfies a constraint ϕ if it 0-satisfies all the atomic constraints in ϕ.

The constraint solver aims at finding some values cn ε-satisfying the constraint ϕ for some small
enough ε, 0 < ε < 1. However, this problem is quite involved.

Fortunately, we are not interested in finding all the solutions of the system. For our purposes it
is enough to find one solution, if such a solution exists, to obtain a test case covering the considered
def-use chains. With this aim our solver uses a numerical technique based on a generalized bisection
algorithm [KS99], which has proved to be reliable for isolating real solutions of multivariate poly-
nomial systems. The algorithm, adapted to our requirements, considers some initial n-dimensional
rectangle D, where the number n of variables in the given constraint ϕ, and some error bound ε,
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and checks if there is any point qn ∈ D which ε-satisfies ϕ. It can be summarized as follows:

Solve(D,ϕ,ε):

I = {D}
While I is not empty and no solution has been found

Select a rectangle S of I.
I = I - {S}
if there exists qn ∈ S such that qi ∈ dom(xi) for i = 1 . . . n then

if qn ε-satisfies ϕ then a solution has been found (qn)
else if mightBeSatisfied(S,ϕ, ε) then

split S in smaller rectangles {S1, . . . , Sk}
I = I ∪{S1, . . . , Sk}

As it can be seen in this description, the algorithm first checks whether there is any point qn
in the rectangle such that qi ∈ dom(xi) for all i = 1 . . . n. If such a point does not exist then the
rectangle can be discarded. Otherwise one of these points is singled out to check if it ε-satisfies
the constraint. In this case we have obviously found a solution. Otherwise the algorithm uses a
test, represented by the function mightBeSatisfied to determine if the rectangle could still contain
some point ε-satisfying ϕ. If this happens the rectangle is split into k smaller rectangles (in our
current implementation k = 3), which will be considered in turn. The process continues until some
solution is found or the set of rectangles is empty, meaning that no solution has been found. Both
the termination property and the correctness of the algorithm depend on the test mightBeSatisfied,
which:

1. Returns no if it can be ensured that actually there is no point in the rectangle that can ε-satisfy
the constraint. In this way the correctness is ensured, since no solution can be skipped.

2. Returns no too, if the size of the rectangle S is smaller than our predefined ε in each dimension
and if any qn ∈ S with qi ∈ dom(xi) for i = 1 . . . n does not ε-satisfy ϕ. This ensures the
termination of the algorithm if no valid solution will be found within the given precision.

To meet the first requirement we must devise some test cannotBeSatisfied(S,ϕ,ε) that can ensure, in
certain cases, that the constraint cannot be ε-satisfied in some rectangle S. Then obviously mightBe-
Satisfied can be defined as:

mightBeSatisfied(S,ϕ,ε):

if cannotBeSatisfied(S,ϕ,ε) ⇒ then return no
else return yes

A constraint ϕ cannot be ε-satisfied if some of its atomic constraints p ♦ 0 cannot be ε-satisfied.
And this can be checked since p is a polynomial and hence a continuous function:
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cannotBeSatisfied(S,p♦0,ε):

Let m,M ∈ R
n be two numbers such that m < p(qn) < M for all qn ∈ S

if ♦ is ’=’ and m · M > 0 and |m|, |M | > ε then return yes
else (♦ is ′ <′)

if m > −ε then return yes
else return no

i.e. a constraint of the form p = 0 cannot be ε-satisfied in S when the upper and the lower
bounds of the polynomial have the same sign (condition m · M > 0) and both are greater that
ε in absolute value. The same occurs if the constraint is of the form p < 0 and the lower bound
is greater than −ε. If neither of these cases occurs then the constraint still might be ε-satisfied
in S. To determine the upper and the lower bounds of a polynomial p in the rectangle S we use
the Bernstein expansion of the polynomial since this representation has the following well-known
property [GG99]:

Let p be a polynomial with n variables and pB its Bernstein expansion. Let m,M be the min-
imum and the maximum respectively of the coefficients of pB . Then m < p(qn) < M for all
qm ∈ [0, 1]n, where [0, 1]n represents the n-dimensional cube [0, 1] × · · · × [0, 1]︸ ︷︷ ︸

n

Then the steps to find the values m,M used in the definition of the function
cannotBeSatisfied(S, p♦0, ε) are the following:

1. Define a n-dimensional homotecy h : [0, 1]n → S converting [0, 1]n into S.
2. Compute the Bernstein expansion pB of the composition p · h, which is also a polynomial.
3. Obtain the maximum coefficient of pB as value M and the minimum coefficient as value m.

Checking that the lower (respectively the upper) bounds of p ◦h in [0, 1]n is the lower (respectively
the upper) bounds of p in S is straightforward. Moreover this technique has the following nice
property:

Let p be a polynomial with n variables and ε ∈ R, 0 < ε < 1. Then for small rectangles S, the
composition p ◦ h, with h an homotecy such that h : [0, 1]n → S, verifies that the minimum m and
the maximum M coefficients of its Bernstein expansion (p ◦ h)B are such that M − m < ε.

This ensures the termination property of the algorithm, since every rectangle such that M−m <
ε either contains a solution or can be discarded. However our current implementation also includes
a time-out to ensure that reaching this limit is not too costly. Of course if the time-out is triggered
then the technique cannot ensure if there is any solution to the system. But in practice this occurs
only with very complex constraints (i.e. polynomials of very high degree). For instance given the
system at the beginning of the section, the solver gets a solution after a few milliseconds.

5 Experimental Results and Restrictions

As we have seen in the previous sections, our constraint solvers are able to handle linear and nonlin-
ear constraints and combinations of them. Interestingly, many of the common algorithms and data
structures known from the literature get by with simple boolean and linear constraint solvers and
the nonlinear solvers will rarely be used.
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Characteristics of constraintsAlgorithm
linear nonlinear floating-point integer

Ackermann
√ √

Binary search
√ √

Bubble Sort
√ √

Bresenham
√ √

Factorial
√ √

Gaussian Elimination
√ √

Greatest Common Divisor
√ √ √

Histogram
√ √

Dijkstra Shortest Path
√ √

Logarithm
√ √

Matrix Multiplication
√ √

McCarthy
√ √

Pattern Matching
√ √

Sin
√ √

Sqrt
√ √

StoogeSort
√ √

Table 1. Characteristics of constraints for several algorithms

This phenomenon is caused in the fact that although the results of many algorithms can involve
rather complex calculations, the decisions, which guide the control flow, are mostly very simple.
Taking for example factorial: the results for the factorials of the first natural numbers are 1! = 1,
2! = 2, 3! = 6, 4! = 24, and 5! = 120. Admittedly the corresponding calculations are surely
nonlinear, but a look at the definition factorial(n) =

∏n
i=1 i shows that a simple loop over the

natural numbers from 1 to n is sufficient. The constraints the CSM has to solve during test case
generation for the factorial method are 1 ≤ n, 2 ≤ n, 3 ≤ n, etc., because only the value of the
control variable i and the value of the input variable n are responsible for the termination of the
loop, whereas the value of the variable i is known in each iteration.

A similar behavior can be observed for every algorithm that is based on simple loops or even
several nested loops having dependent or independent termination conditions. Algorithms in this
category are vector and matrix multiplication, several sorting algorithms such as bubble sort, naive
string pattern matching algorithms, and even the recursive Ackermann function.

The constraints become a little bit more complicated, if methods are performing nonlinear com-
putations and their results are used to decide on the termination of the algorithm. Then the nonlinear
computations will become part of the constraints. This problem can often be found in numerical al-
gorithms like the computation of different Taylor series to approximate trigonometric functions,
logarithms, roots, or the exponential function. Here often the value of a previously calculated esti-
mation is compared to the current result to check whether more approximations are needed.

At a first glance this may quickly lead to a big problem, since in some calculations the exponents
of the symbolically calculated intermediate results grow by each iteration of the calculation. But in
order to generate complete sets of test cases for simple testing criteria like the commonly used
def-use chain coverage we typically require only a small number of passes through loops. Thus
the complexity of the constraints we gathered was mostly relatively small and hence manageable
in a short amount of time. In particular our tool is able to generate the complete sets of test cases
regarding the def-use chain coverage for the algorithms mentioned in Table1 in a few seconds. This
table shows what kinds of constraints occur in the example applications we have considered.

Although the prototype of our test case generator has proven to be applicable to many algo-
rithms, there are still a few problems we have to solve. For instance, our tool does not yet offer a
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constraint solver that can manage constraints containing bit operations corresponding to the byte
code instructions ishl, ishr, iushr, lshl, lshr, and lushr, which are produced by Java’s shift
operators <<, >>, and <<< on expressions of the types int and long. Since these operations are
lacking in the usual algebra, workarounds have to be invented to deal with them. Fortunately, they
rarely occur in application software and are typically only found in system software such as device
drivers.

As mentioned already, very few iterations of each loop are typically sufficient to cover all def-
use-chains. In cases where the number of iterations or recursive calls is very large, e.g. since it has
been fixed by a large constant (note that this is bad programming style), the symbolic computation
might take too long. Pragmatically, our tool will stop with a corresponding error message in that
case. Note that due to the halting problem, it is in general impossible to determine the number of
required iterations.

On the other hand our approach is vulnerable to rounding errors that come along with calcu-
lations on floating point values. Since our computations are not identical to that of the concrete
JVM, the rounding errors in our tool and in the concrete JVM computation may differ. Note that it
is equally bad to be less precise that the concrete JVM computation than to be more precise. The
different rounding behavior may cause the symbolic and concrete computation to diverge, which
would affect the correctness of our approach. Thus after generating the test cases, we will compare
the paths taken by the symbolic and concrete computations. If they diverge, we will (try to) adapt
the responsible input parameter, say from 3.9999 to 4.0. In case, where this does not work, our tool
has to give up with a corresponding error message. After all, our tool tries to be helpful in almost all
cases. In the few remaining cases, the user has to find suitable test cases on his own. In particular,
this might happen in numerically instable calculations, which should be avoided anyway. In any
case, we can guarantee that only correct test cases are generated. To summarize, our tool is correct
but not necessarily complete (among others due to the halting problem).

As we already mentioned, we actually have only a prototypically implementation of our test
tool and some features are not entirely realized. E.g. the symbolic execution engine of our tool
is not yet able to handle all of the features of the Java language. First of all we have to consider
the multithreading capability in this context, which may cause a nondeterministic behavior of Java
programs and thus makes it hard to generate test cases that satisfy a certain coverage criterion
in a real virtual machine. Secondly it is allowed to integrate functions and applications into Java
programs that are not written in the Java language by using the Java Native Interface [Li99]. Java
methods based on native method calls or methods invoking those native methods are at the moment
not analyzable by our test tool.

6 Related Work

Many approaches to software testing have been proposed (see e.g. [Ed99] for an overview), but only
a few can directly be related to our approach.

Gupta, Mathur and Soffa [GM00] have proposed an approach that uses a branch selection al-
gorithm that generates input data which exercises a selected branch in a program. However their
approach features no virtual machine and is strictly numerical. Gotlieb, Botella and Rueher [GB98]
have proposed a limited constraint-based approach for a sub-set of the C-language that can identify
paths that cover every instruction in the program. Their approach featured neither an exchangeable
testing criterion, nor did the test tool contain several, automatically chosen constraint solvers. Korel
[Ko96] has presented an approach to generate test data by performing a data dependence analysis
in Turbo Pascal programs and using minimization techniques to discover suitable input values. The

30



constraint-based approach by Offutt and DeMillo [DO91] is based on their unusual mutation anal-
ysis test criterion, but comprehends just a naive constraint solver. An early approach to test-data
generation was proposed by Ramamoorthy, Ho, and Chen [RH76], who transformed Fortran-code
to a basic form and tried to solve the constraints describing the sought paths through the program
by forward substitution. Finally, Lapierre et al. [LM99] implemented a tool that tried to solve the
path-describing constraints by using mixed-integer linear programming for C programs.

7 Conclusions and Future Work

In this paper we have presented a tool for the automatized generation of glass-box test cases for
Java methods using a combination of a symbolic Java virtual machine and a dedicated constraint
solver. We pointed out that a simple usage of already known constraint solvers or constraint solving
algorithms is not sufficient for the considered application, since the constraints that have to be
managed occur not in normalized forms but have to be transformed by a dedicated constraint solver
manager before passing them to the various solvers. We also discussed the influence of the different
Java primitive types on the way, the constraints will be treated. We have additionally shown how
the constraint solver manager handles incrementally arriving constraints.

Our system of constraint solvers contains in particular a solver using the simplex algorithm, a
Fourier-Motzkin elimination solver for linear constraints, and a bisection solver for nonlinear ones.
We are not aware of any other test case generator, which provides this powerful combination of
solvers.

The experiences with our prototype have shown a few possible enhancements and some topics
that will have to be improved in future releases, e.g. the handling of threads and the integration of
native method calls.
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