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Abstract

A declarative debugger for Maude functional modules, which correspond to executable specifications in
membership equational logic, is presented. Starting from an incorrect computation, declarative debugging
builds a debugging tree as logical representation of the computation, that then is traversed by asking
questions to an external oracle until the error is found. We summarize the construction of appropriate
debugging trees for oriented equational and membership inferences, where all the nodes whose correction
does not need any justification have been collapsed. The reflective features of Maude allow us to generate
and navigate the debugging tree of a Maude computation using operations in Maude itself; even the user
interface of the declarative debugger can be specified in this way. We present the debugger’s main features,
such as two different strategies to traverse the debugging tree, use of a correct module to reduce the number
of questions asked to the user, selection of trusted vs. suspicious statements by means of labels, and trusting
of statements “on the fly.”

Keywords: declarative debugging, membership equational logic, Maude, functional modules, metalevel
implementation

1 Introduction

Maude is a high-level language and high-performance system supporting both equa-
tional and rewriting logic [12] computation for a wide range of applications. In
particular, Maude functional modules correspond to specifications in membership
equational logic (MEL) [2,13], which, in addition to equations, allows the statement
of membership assertions characterizing the elements of a sort. In this way, Maude
makes possible the faithful specification of data types (like sorted lists or search
trees) whose data are defined not only by means of constructors, but also by the
satisfaction of additional properties.

The Maude system supports several approaches for debugging Maude programs:
tracing, term coloring, and using an internal debugger [7, Chap. 22]. The tracing
facilities allow us to follow the execution on a specification, that is, the sequence
of rewrites that take place. Term coloring consists in printing with different colors
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the operators used to build a term that does not fully reduce. The Maude debugger
allows to define break points in the execution by selecting some operators or state-
ments. When a break point is found the debugger is entered. There, we can see the
current term and execute the next rewrite with tracing turned on.

The Maude debugger has as a disadvantage that, since it is based on the trace,
it shows to the user every small step obtained by using a single statement. Thus
the user can lose the general view of the proof of the incorrect inference that pro-
duced the wrong result. That is, when the user detects an unexpected statement
application it is difficult to know where the incorrect inference started.

Different debugging approaches based on the languages semantics have been in-
troduced in the field of declarative languages, such as abstract diagnosis, which for-
mulates a debugging methodology based on abstract interpretation [9,1], or declar-
ative debugging, also known as algorithmic debugging, which was first introduced by
E. Y. Shapiro [19] and that constitutes the framework of this work. Declarative de-
bugging has been widely employed in the logic [10,14,22], functional [21,17,16,18],
and multi-paradigm programming [5,3,11] languages. Declarative debugging is a
semi-automatic technique that starts from a computation considered incorrect by
the user (error symptom) and locates a program fragment responsible for the error.
The declarative debugging scheme [15] uses a debugging tree as logical representation
of the computation. Each node in the tree represents the result of a computation
step, which must follow from the results of its children nodes by some logical infer-
ence. Diagnosis proceeds by traversing the debugging tree, asking questions to an
external oracle (generally the user) until a so-called buggy node is found. A buggy
node is a node containing an erroneous result, but whose children have all correct
results. Hence, a buggy node has produced an erroneous output from correct inputs
and corresponds to an erroneous fragment of code, which is pointed out as an error.

During the debugging process, the user does not need to understand the com-
putation operationally. Any buggy node represents an erroneous computation step,
and the debugger can display the program fragment responsible for it. From an
explanatory point of view, declarative debugging can be described as consisting of
two stages, namely the debugging tree generation and its navigation following some
suitable strategy [20].

Here we present a declarative debugger for Maude functional modules [7, Chap. 4].
The debugging process starts with an incorrect transition from the initial term to
a fully reduced unexpected one. Our debugger, after building a proof tree for that
inference, will present to the user questions of the following form: “Is it correct that
T fully reduces to T ′?”, which in general are easier to answer. Moreover, since the
questions are located in the proof tree, the answer allows the debugger to discard a
subset of the questions, leading and shortening the debugging process.

The current version of the tool has the following characteristics:

• It supports all kinds of functional modules: operators can be declared with any
combination of axiom attributes (except for the attribute strat, that allows to
specify an evaluation strategy); equations can be defined with the otherwise
attribute; and modules can be parameterized.

• It provides two strategies to traverse the debugging tree: top-down, that traverses
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the tree from the root asking each time for the correctness of all the children of
the current node, and then continues with one of the incorrect children; and divide
and query, that each time selects the node whose subtree’s size is the closest one
to half the size of the whole tree, keeping only this subtree if its root is incorrect,
and deleting the whole subtree otherwise.

• Before starting the debugging process, the user can select a module containing
only correct statements. By checking the correctness of the inferences with respect
to this module (i.e., using this module as oracle) the debugger can reduce the
number of questions asked to the user.

• It allows to debug Maude functional modules where some equations and member-
ships are suspicious and have been labeled (each one with a different label). Only
these labeled statements generate nodes in the proof tree, while the unlabeled
ones are considered correct. The user is in charge of this labeling. Moreover,
the user can answer that he trusts the statement associated with the currently
questioned inference; that is, statements can be trusted “on the fly.”

Exploiting the fact that rewriting logic is reflective [6,8], a key distinguishing
feature of Maude is its systematic and efficient use of reflection through its prede-
fined META-LEVEL module [7, Chap. 14], a feature that makes Maude remarkably
extensible and that allows many advanced metaprogramming and metalanguage
applications. This powerful feature allows access to metalevel entities such as spec-
ifications or computations as usual data. Therefore, we are able to generate and
navigate the debugging tree of a Maude computation using operations in Maude
itself. In addition, the Maude system provides another module, LOOP-MODE [7,
Chap. 17], which can be used to specify input/output interactions with the user.
Thus, our declarative debugger for Maude functional modules, including its user
interactions, is implemented in Maude itself. As far as we know, this is the first
declarative debugger implemented using such reflective techniques.

Complete explanations about the fundamentals of our declarative debugging
approach, additional examples, and more information about the implementation
can be found in the technical report [4], which, together with the Maude source
files for the debugger, is available from the webpage http://maude.sip.ucm.es/
debugging.

2 Declarative debugging of Maude functional modules

As mentioned in the introduction, Maude uses membership equational logic [2,13],
a very expressive version of equational logic which, in addition to equations, allows
the statement of membership assertions characterizing the elements of a sort. We
present below how its specifications are represented as Maude functional modules
and a brief description of the theoretical basics of our debugger.

2.1 Membership equational logic

A signature in MEL is a triple (K,Σ, S) (just Σ in the following), with K a set of
kinds, Σ = {Σk1...kn,k}(k1...kn,k)∈K∗×K a many-kinded signature, and S = {Sk}k∈K

a pairwise disjoint K-kinded family of sets of sorts. Intuitively, terms with a kind
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but without a sort represent undefined or error elements. MEL atomic formulas are
either equations t = t′, where t and t′ are Σ-terms of the same kind, or membership
assertions of the form t : s, where the term t has kind k and s ∈ Sk. Sentences
are universally-quantified Horn clauses of the form (∀X)A0 ⇐ A1 ∧ . . .∧An, where
each Ai is either an equation or a membership assertion. A specification is a pair
(Σ, E), where E is a set of sentences over the signature Σ.

Models of MEL specifications are called algebras. A Σ-algebra A consists of a
set Ak for each kind k ∈ K, a function Af : Ak1×· · ·×Akn −→ Ak for each operator
f ∈ Σk1...kn,k, and a subset As ⊆ Ak for each sort s ∈ Sk. The meaning [[t]]A of a
term t in an algebra A is inductively defined as usual. Then, an algebra A satisfies
an equation t = t′ (or the equation holds in the algebra), denoted A |= t = t′, when
both terms have the same meaning: [[t]]A = [[t′]]A. In the same way, satisfaction of
a membership is defined as: A |= t : s when [[t]]A ∈ As. A specification (Σ, E) has
an initial model TΣ/E whose elements are E-equivalence classes of terms [t]. We
refer to [2,13] for a detailed presentation of (Σ, E)-algebras, sound and complete
deduction rules, initial and free algebras, and specification morphisms.

Since the MEL specifications that we consider are assumed to satisfy the ex-
ecutability requirements of confluence, termination, and sort-decreasingness, their
equations t = t′ can be oriented from left to right, t→ t′. Such a statement holds in
an algebra, denoted A |= t → t′, exactly when A |= t = t′, i.e., when [[t]]A = [[t′]]A.
Moreover, under those assumptions an equational condition u = v in a conditional
equation can be checked by finding a common term t such that u → t and v → t,
that is, u ↓ v. This is the notation we will use in the inference rules and debugging
trees studied in Sect. 2.3.

2.2 Representation in Maude

Maude functional modules, introduced with syntax fmod...endfm, are executable
MEL specifications and their semantics is given by the corresponding initial mem-
bership algebra in the class of algebras satisfying the specification.

In a functional module we can declare sorts (by means of keyword sort(s));
subsort relations between sorts (subsort); operators (op) for building values of
these sorts, giving the sorts of their arguments and result, and which may have
attributes such as being associative (assoc) or commutative (comm), for example;
memberships (mb) asserting that a term has a sort; and equations (eq) identifying
terms. Both memberships and equations can be conditional (cmb and ceq).

Maude does automatic kind inference from the sorts declared by the user and
their subsort relations. Kinds are not declared explicitly, and correspond to the
connected components of the subsort relation. The kind corresponding to a sort s
is denoted [s]. For example, if we have sorts Nat for natural numbers and NzNat
for nonzero natural numbers with a subsort NzNat < Nat, then [NzNat] = [Nat].

An operator declaration like
op _div_ : Nat NzNat -> Nat .

is logically understood as a declaration at the kind level
op _div_ : [Nat] [Nat] -> [Nat] .

4



Caballero, Mart́ı-Oliet, Riesco, and Verdejo

together with the conditional membership axiom
cmb N div M : Nat if N : Nat and M : NzNat .

A subsort declaration NzNat < Nat is logically understood as the conditional
membership axiom
cmb N : Nat if N : NzNat .

2.2.1 An example: binary search trees
As an example of Maude functional modules, we show how to specify binary search
trees without repeated elements, whose nodes contain elements that satisfy the
theory STOSET (defining a strict total order on them) [7, Sect. 8.3].
fmod SEARCH-TREE{X :: STOSET} is
sorts NeSearchTree{X} SearchTree{X} Tree{X} .
subsorts NeSearchTree{X} < SearchTree{X} < Tree{X} .
op empty : -> SearchTree{X} [ctor] .
op ___ : Tree{X} X$Elt Tree{X} -> Tree{X} [ctor] .

where the operation for building non-empty search trees uses juxtaposition and
X$Elt denotes the sort Elt from the theory STOSET.

A tree is a search tree when its root is bigger than all the elements in the left
subtree and smaller than all the elements in the right subtree; this requirement is
specified by means of memberships. Assuming that the subtrees are search trees,
instead of comparing with all their elements, it is enough to compare with the
minimum or maximum of the appropriate subtree.
vars E E’ : X$Elt .
vars L R : SearchTree{X} .
vars L’ R’ : NeSearchTree{X} .
mb [leaf] : empty E empty : NeSearchTree{X} .
cmb [1ch1] : L’ E empty : NeSearchTree{X} if max(L’) < E .
cmb [1ch2] : empty E R’ : NeSearchTree{X} if E < min(R’) .
cmb [2ch] : L’ E R’ : NeSearchTree{X}
if max(L’) < E /\ E < max(R’) .

ops min max : NeSearchTree{X} -> X$Elt .
ceq [mn1] : min(empty E R) = E if empty E R : NeSearchTree{X} .
ceq [mn2] : min(L’ E R) = min(L’) if L’ E R : NeSearchTree{X} .
ceq [mx1] : max(L E empty) = E if L E empty : NeSearchTree{X} .
ceq [mx2] : max(L E R’) = max(R’) if L E R’ : NeSearchTree{X} .

The delete operation is specified as usual by structural induction, and in the
non-empty case by comparing the element to be deleted with the root of the tree
and distinguishing the three cases according to whether the former is smaller than,
equal to, or bigger than the latter.
op delete : SearchTree{X} X$Elt -> SearchTree{X} .
eq [dl1] : delete(empty, E) = empty .
ceq [dl2] : delete(L E R, E’) = delete(L, E’) E R

if E’ < E /\ L E R : NeSearchTree{X} .
ceq [dl3] : delete(L E R, E’) = L E delete(R, E’)

if E < E’ /\ L E R : NeSearchTree{X} .
ceq [dl4] : delete(empty E R, E) = R if empty E R : NeSearchTree{X} .
ceq [dl5] : delete(L E empty, E) = L if L E empty : NeSearchTree{X} .
ceq [dl6] : delete(L’ E R’, E) = L’ E’ delete(R’, E)

if E’ := min(R’) /\ L’ E R’ : NeSearchTree{X} .
endfm
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(Reflexivity) e→ e (Rf )

(Transitivity) e1 → e′ e′ → e2
e1 → e2

(Tr)

(Congruence)
e1 → e′1 . . . en → e′n

f(e1, . . . , en)→ f(e′1, . . . , e
′
n)

(Cong)

(Subject Reduction) e→ e′ e′ : s
e : s (SRed)

(Membership)
{θ(ui) ↓ θ(u′i)}1≤i≤n {θ(vj) : sj}1≤j≤m

θ(e) : s
(Mb)

if e : s⇐ u1 = u′1 ∧ · · · ∧ un = u′n ∧ v1 : s1 ∧ · · · ∧ vm : sm

(Replacement)
{θ(ui) ↓ θ(u′i)}1≤i≤n {θ(vj) : sj}1≤j≤m

θ(e)→ θ(e′)
(Rep)

if e→ e′ ⇐ u1 = u′1 ∧ · · · ∧ un = u′n ∧ v1 : s1 ∧ · · · ∧ vm : sm

Fig. 1. Semantic calculus for Maude functional modules

This specification could be completed with other operations for insertion and
look up.

Now we can instantiate this module with the predefined module INT of integer
numbers, and reduce the following term
Maude> red delete((empty 1 empty) 2 ((empty 4 empty) 5 (empty 6 (empty 7 empty))), 5) .
result NeSearchTree{Int}: (empty 1 empty) 2 ((empty 4 empty) 6 (empty 6 (empty 7 empty)))

We obtain a tree with repetitions. Moreover, Maude infers that it is a search
tree! Did you notice the bugs? We will show in Sect. 3.3 how to use the debugger
to detect them.

2.3 Declarative debugging

The inference rules of the calculus defining the operational semantics can be found
in Fig. 1. They are an adaptation to the case of Maude functional modules of the
deduction rules for MEL presented in [2]. We assume the existence of an intended
interpretation I of the specification, which is a Σ-algebra corresponding to the
model that the user had in mind while writing the statements E. The user expects
that I |= e→ e′, I |= e : s for each reduction e→ e′ and membership e : s computed
w.r.t. the specification (Σ, E).

We will say that e→ e′ (respectively e : s) is valid when it holds in I, and invalid
otherwise. Declarative debuggers rely on some external oracle, normally the user, in
order to obtain information about the validity of some nodes in the debugging tree.
The concept of validity can be extended to distinguish wrong equations and wrong
membership axioms, which are those specification pieces that can deduce something
invalid from valid information.

It will be convenient to represent deductions in the calculus as proof trees, where
the premises are the children nodes of the conclusion at each inference step. In
declarative debugging we are specially interested in buggy nodes which are invalid
nodes with all its children valid. Our goal is to find a buggy node in any proof tree
T rooted by the initial error symptom detected by the user. This could be done
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simply by asking questions to the user about the validity of the nodes in the tree
according to the following top-down strategy:

Input: A tree T with an invalid root.
Output: A buggy node in T .
Description: Consider the root N of T . There are two possibilities:
• If all the children of N are valid, then finish pointing out at N as buggy.
• Otherwise, select the subtree rooted by any invalid child and use recursively

the same strategy to find the buggy node.

Proving that this strategy is complete is straightforward by using induction on the
height of T . As a consequence, if T is a proof tree with an invalid root, then there
exists a buggy node N ∈ T such that all the ancestors of N are invalid.

However, we will not use the proof tree T as debugging tree, but a suitable
abbreviation which we denote by APT (T ) (from Abbreviated Proof Tree). In order
to simplify the proof trees we take advantage of a property that every Σ-algebra
A satisfies: if e → e′ (respectively e : s) can be deduced by any of the first four
inference rules of the calculus using premises that hold in A, then A |= e → e′

(respectively A |= e : s). This property cannot be extended to the membership and
replacement inference rules, where the correctness of the conclusion depends not
only on the calculus but also on the associated specification statement, which could
be wrong. Therefore the only inferences that can obtain an invalid conclusion from
valid premises, i.e., the only possible buggy nodes, correspond to the replacement
and membership inferences. The APT (T ) keeps only the nodes corresponding to
these inferences. Fig. 2 shows the definition of APT (T ), where the Ti represent
proof trees corresponding to the premises in some inferences.

The rule APT 1 keeps the root unaltered and employs the auxiliary function
APT ′ to produce the children subtrees. APT ′ is defined in rules APT 2 . . . APT 8.
It takes a proof tree as input parameter and returns a forest {T1, . . . , Tn} of APT s
as result. The rules for APT ′ are assumed to be tried top-down, in particular APT 4

must not be applied if APT3 is also applicable. It is easy to check that every node
N ∈ T conclusion of a replacement or membership inference has its corresponding
node N ′ ∈ APT (T ) labeled with the same abbreviation, and conversely, that for
each N ′ ∈ APT (T ) different from the root, there is a node N ∈ T , which is
the conclusion of a replacement or membership inference. In particular the node
associated to e1 → e2 in the righthand side of APT3 is the node e1 → e′ of the
proof tree T , which is not included in the APT (T ). We have chosen to introduce
e1 → e2 instead of simply e1 → e′ in the APT (T ) as a pragmatic way of simplifying
the structure of the APT s, since e2 is obtained from e′ and hence likely simpler
(the root of the tree Tn+1 in APT3 must be necessarily of the form e′ → e2 by the
structure of the inference rule for transitivity in Fig. 1).

Although APT (T ) is no longer a proof tree we keep the inference labels (Rep)
and (Mb), assuming implicitly that they contain a reference to the equation or
membership axiom used at the corresponding step in the original proof trees. This
information is used by the debugger in order to single out the incorrect fragment of
specification code. The abbreviation of the tree reduces and simplifies the questions
that will be asked to the user while keeping the soundness and completeness of the
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(APT1) APT

 
T1 . . . Tn

af
(R)

!
=

APT ′

 
T1 . . . Tn

af
(R)

!
af

(with (R) any inference rule)

(APT2) APT ′

 
e→ e

(Rf )

!
= ∅

(APT3) APT ′

0B@ T1 . . . Tn

e1 → e′
(Rep)

Tn+1

e1 → e2

(Tr)

1CA =

(
APT ′(T1) . . . APT ′(Tn) APT ′(Tn+1)

e1 → e2
(Rep)

)

(APT4) APT ′

 
T1 T2

e1 → e2
(Tr)

!
= {APT ′(T1), APT ′(T2)}

(APT5) APT ′

 
T1 . . . Tn

e1 → e2
(Cong)

!
= {APT ′(T1), . . . , APT ′(Tn)}

(APT6) APT ′

 
T1 T2

e : s
(SRed)

!
= {APT ′(T1), APT ′(T2)}

(APT7) APT ′

 
T1 . . . Tn

e : s
(Mb)

!
=

(
APT ′(T1) . . . APT ′(Tn)

e : s
(Mb)

)

(APT8) APT ′

 
T1 . . . Tn

e1 → e2
(Rep)

!
=

(
APT ′(T1) . . . APT ′(Tn)

e1 → e2
(Rep)

)

Fig. 2. Transformation rules for obtaining abbreviated proof trees

N 1 N : NeST
leaf

max(N 1 N)→ 1
mx1

N 4 N : NeST
leaf

max(N 4 N)→ 4
mx1

N 7 N : NeST
leaf

min(N 7 N)→ 7
mn1

N 6 (N 7 N) : NeST
1ch2

N 7 N : NeST
leaf

max(N 7 N)→ 7
mx1

max(N 6 (N 7 N))→ 7
mx2

(N 4 N) 6 (N 6 (N 7 N)) : NeST (?)
2ch

�
�
�

A
A
A

max((N 4 N) 6 (N 6 (N 7 N)))
mx2

(N 1 N) 2 ((N 4 N) 6 (N 6 (N 7 N))) : NeST
2ch

Fig. 3. Abbreviated proof tree

technique, as the following theorem (proved in [4]) guarantees:

Theorem 2.1 Let S be a specification, I its intended interpretation, and T a finite
proof tree with invalid root. Then:

• APT (T ) contains at least one buggy node (completeness).
• Any buggy node in APT (T ) has an associated wrong statement in S (soundness).

The theorem states that we can safely employ the abbreviated proof tree as a
basis for the declarative debugging of Maude functional modules: the technique
will find a buggy node starting from any initial symptom detected by the user. Of
course, these results assume that the user answers correctly all the questions about
the validity of the APT nodes asked by the debugger (see Sect. 3.1).

The APT for the wrong membership inference of Sect. 2.2.1 is shown in Fig. 3,
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where N denotes the empty search tree and 5 represents the already depicted proof
subtree with root max(N 6 (N 7 N))→ 7.

3 Using the debugger

Before describing the basics of the user interaction with the debugger, we make ex-
plicit what is assumed about the modules introduced by the user; then we present
the available commands and how to use them to debug the buggy example intro-
duced in Sect. 2.2.1.

3.1 Assumptions

Since we are debugging Maude functional modules, they are expected to satisfy
the appropriate executability requirements, namely, the specifications have to be
terminating, confluent, and sort decreasing.

One interesting feature of our tool is that the user is allowed to trust some
statements, by means of labels applied to the suspicious statements. This means
that the unlabeled statements are assumed to be correct. A trusted statement is
treated in the implementation as the first four rules in Fig. 1 are treated in the APT
transformation; more specifically, an instance of the membership or replacement
inference rules corresponding to a trusted statement is collapsed in the abbreviated
proof tree. In order to obtain a nonempty abbreviated proof tree, the user must have
labeled some statements (all with different labels); otherwise, everything is assumed
to be correct. In particular, the buggy statement must be labeled in order to be
found. When not all the statements are labeled, the correctness and completeness
results shown in Sect. 2.3 are conditioned by the goodness of the labeling for which
the user is responsible.

Although the user can introduce a module importing other modules, the debug-
ging process takes place in the flattened module. However, the debugger allows the
user to trust a whole imported module.

As already mentioned, navigation of the debugging tree takes place by asking
questions to an external oracle, which in our case is either the user or another module
introduced by the user. In both cases the answers are assumed to be correct. If
either the module is not really correct or the user provides an incorrect answer, the
result is unpredictable. Notice that the information provided by the correct module
need not be complete, in the sense that some functions can be only partially defined.

3.2 Commands

The debugger is initiated in Maude by loading the file fdd.maude, which starts an
input/output loop that allows the user to interact with the tool.

As we said in the introduction, the generated proof tree can be navigated by
using two different strategies, namely, top-down and divide and query, being the
latter the default one. The user can switch between them by using the commands
(top-down strategy .) and (divide-query strategy .). If a module with cor-
rect definitions is used to reduce the number of questions, it must be indicated before
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starting the debugging with the command (correct with MODULE-NAME .). More-
over, the user can trust all the statements in several modules with the command
(trust[*] MODULE-NAMES-LIST .) where * means that modules are considered flat-
tened.

Once we have selected the strategy and, optionally, the module above, we start
the debugging process with the command
(debug INITIAL-TERM -> WRONG-TERM in MODULE-NAME .)

If we want to debug only with a subset of the labeled statements, we use the
command
(debug INITIAL-TERM -> WRONG-TERM in MODULE-NAME with LABELS .)

where LABELS is the set of suspicious equation and membership labels that must be
taken into account when computing the debugging tree. In the same way, we can
debug a membership inference with the commands
(debug INITIAL-TERM : WRONG-SORT in MODULE-NAME .)
(debug INITIAL-TERM : WRONG-SORT in MODULE-NAME with LABELS .)

How the process continues depends on the selected strategy. In case the top-
down strategy is selected, several nodes will be displayed in each question. If there is
an invalid node, we must select one of them with the command (node N .), where
N is the identifier of that wrong node. If all the nodes are correct, we type (all
valid .). In the divide and query strategy, each question refers to one inference
that can be either correct or wrong. The different answers are transmitted to the
debugger with the commands (yes .) and (no .). Instead of just answering yes,
we can also trust some statements on the fly if, once the process has started, we
decide the bug is not there. To trust the current statement we type the command
(trust .).

Finally, we can return to the previous state in both strategies by using the
command (undo .).

3.3 Binary search trees revisited

We recall from Sect. 2.2.1 that the deletion in our binary search trees specification is
incorrect. In particular Maude assigns the sort NeSearchTree{Int} to a tree with
repetitions. We can debug the inference of this membership with the command
Maude> (debug (empty 1 empty) 2 ((empty 4 empty) 6 (empty 6 (empty 7 empty))) :

NeSearchTree{Int} in SEARCH-TREE-TEST .)

that generates the debugging tree shown in Fig. 3 by considering all the labeled
statements as suspicious. Since the default navigation strategy is divide and query,
the debugger selects the node marked with ? in the figure, and then asks the fol-
lowing question:
Is this membership (associated with the membership 2ch) correct?
(empty 4 empty) 6 (empty 6 (empty 7 empty)) : NeSearchTree{Int}
Maude> (no .)

Since the answer is no, the debugger discards the rest of the tree and focuses in
the subtree with this node as root (see Fig. 4). The next question corresponds to
the node marked with † in the figure.

10
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N 4 N : NeST
leaf

max(N 4 N)→ 4
mx1

N 7 N : NeST
leaf

min(N 7 N)→ 7
mn1

N 6 (N 7 N) : NeST
1ch2

N 7 N : NeST
leaf

max(N 7 N)→ 7
mx1

max(N 6 (N 7 N))→ 7 (†)
mx2

(N 4 N) 6 (N 6 (N 7 N)) : NeST
2ch

Fig. 4. Abbreviated proof tree after the first question

N 4 N : NeST
leaf

max(N 4 N)→ 4
mx1

(N 4 N) 6 (N 6 (N 7 N)) : NeST
2ch

Fig. 5. Abbreviated proof tree after the second question

�
�
�

A
A
A

(N 1 N) 2 R : NeST
2ch

�
�
�

A
A
A

N 6 (N 7 N) : NeST
1ch2 �

�
�

A
A
A

R : NeST
2ch �

�
�

A
A
A

dl(N 6 (N 7 N), 5)→ N 6 (N 7 N)
dl2

dl(R, 5)→ (N 4 N) 6 (N 6 (N 7 N))
dl6

dl((N 1 N) 2 R, 5)→ (N 1 N) 2 ((N 4 N) 6 (N 6 (N 7 N)))
dl3

Fig. 6. Abbreviated proof tree for the top down strategy

Is this transition (associated with the equation mx2) correct?
max(empty 6 (empty 7 empty)) -> 7
Maude> (yes .)

When the answer is yes the corresponding subtree is deleted, obtaining in this
case the tree in Fig. 5. The next question is
Is this transition (associated with the equation mx1) correct?
max(empty 4 empty) -> empty 4 empty
Maude> (trust .)

In the last question, we realized that the equation applied is so simple that we
can trust it. This answer has a behavior similar to yes: it deletes all the subtrees
whose root is labeled as the current statement. With these answers, we obtain a
tree with only one node and the debugger is able to conclude which is the buggy
membership.
The buggy node is:
(empty 4 empty) 6 (empty 6 (empty 7 empty)) : NeSearchTree{Int}
With the associated membership: 2ch

In fact, if we check now this membership we notice that it compares the root
with the biggest value of the right subtree, when it should be compared with the
smallest one. After fixing this error, the delete function is still incorrect, so we
debug this function (using the top-down strategy for illustration’s sake) as follows:
Maude> (top-down strategy .)
Maude> (debug delete((empty 1 empty) 2 ((empty 4 empty) 5 (empty 6 (empty 7 empty))), 5)

-> (empty 1 empty) 2 ((empty 4 empty) 6 (empty 6 (empty 7 empty)))
in SEARCH-TREE-TEST with leaf 1ch1 1ch2 2ch dl2 dl3 dl4 dl5 dl6 .)

where we have decided to mark as suspicious the memberships and the non-trivial
equations of delete. In this case, the debugger builds the proof tree (partially)
shown in Fig. 6 (where R denotes the search tree (N 4 N) 5 (N 6 (N 7 N))), so it
asks the following questions:
Is any of these nodes wrong?
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Node 0 : (empty 1 empty) 2 ((empty 4 empty) 5 (empty 6 (empty 7 empty))) :
NeSearchTree{Int}

Node 1 : delete((empty 4 empty) 5 (empty 6 (empty 7 empty)), 5) ->
(empty 4 empty) 6 (empty 6 (empty 7 empty))

Maude> (node 1 .)

Is any of these nodes wrong?
Node 0 : empty 6 (empty 7 empty) : NeSearchTree{Int}
Node 1 :(empty 4 empty) 5 (empty 6 (empty 7 empty)) : NeSearchTree{Int}
Node 2 : delete(empty 6 (empty 7 empty), 5) -> empty 6 (empty 7 empty)
Maude> (all valid .)

The buggy node is:
delete((empty 4 empty) 5 (empty 6 (empty 7 empty)), 5) ->

(empty 4 empty) 6 (empty 6 (empty 7 empty))
With the associated equation: dl6

The debugger concludes that the problem is within the equation dl6. We leave
to the interested reader the task of fixing it.

4 Implementation

As we said in the introduction, the reflective power of Maude allows us to gen-
erate and navigate the debugging tree of a computation in Maude itself. Since
navigation is done by asking questions to the user, this stage has to handle the
navigation strategy together with the input/output interaction with the user. In-
deed, this interaction can also be implemented in Maude by using the predefined
module LOOP-MODE [7, Chap. 17], that handles the input/output and maintains the
persistent state of the tool.

Below we show the main functions involved in the implementation; the technical
report [4] provides a full explanation of the complete implementation, including the
user interaction.

4.1 Debugging tree construction

To build the debugging tree we use the facts that the equations defined in Maude
functional modules are both terminating and confluent. Instead of creating the
complete proof tree and then abbreviating it, we build the abbreviated proof tree
directly. The information kept in each node corresponds to an inference, represented
by a statement’s label, its lefthand side (a term), and its righthand side (either a
term or a sort).

The function createTree controls the construction of this tree (it implements
the function APT from Fig. 2). It receives the module where a suspicious inference
took place, a correct module (or the constant maybe when no such module is pro-
vided) to prune the tree, the term initially reduced, the (erroneous) result obtained,
and the set of suspicious statement labels. It keeps the initial reduction as the root
of the tree and uses an auxiliary function createForest (implementing the func-
tion APT ′ from Fig. 2) that, in addition to the arguments received by createTree,
receives the module “cleaned” of suspicious statements (by using transform), and
generates the forest of abbreviated trees corresponding to the reduction between
the two terms given as arguments. This transformed module is used to improve the
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efficiency of the tree construction, because we can use it to check if a term reaches
its final form by using only trusted equations, thus avoiding to build a tree that will
be finally empty.
op createTree : Module Maybe{Module} Term Term QidSet -> Tree .
ceq createTree(M, CM, T, T’, QS) = contract(

tree(node(’root : T -> T’, getOffspring*(F) + 1), F))
if M’ := transform(M, QS) /\

F := createForest(M, M’, CM, normal(M, T), normal(M, T’), QS) .

where contract prunes the root of the tree if it is duplicated after the computation
of the tree.

We use the function createForest to create a forest of abbreviated trees. This
function checks if the terms can be reduced by using only trusted statements or
if the correct module can compute this reduction; in such cases, there is no need
to compute the forest. Otherwise, it works with the same innermost strategy as
the Maude interpreter: It first tries to fully reduce the subterms (by means of
the function reduceSubterms), and once all the subterms have been reduced, if
the result is not the final one, it tries to reduce at the top (by using the function
applyEq), to reach the final result by transitivity.
op createForest : Module Module Maybe{Module} Term Term QidSet -> Forest .
ceq createForest(OM, TM, CM, T, T’, QS) = mtForest
if reduce(TM, T) == T’ or-else reduce(M, T) == reduce(M, T’) .

ceq createForest(OM, TM, CM, T, T’, QS) =
if T’’ == T’ then F
else F applyEq(OM, TM, CM, T’’, T’, QS)
fi

if < T’’, F > := reduceSubterms(OM, TM, CM, T, QS) [owise] .

The reduceSubterms function returns a pair consisting of the term with its
subterms fully reduced (that is, this function mimics a specific behavior of the
congruence rule in Fig. 1) and the forest of abbreviated trees generated by these
reductions.

The function applyEq tries to apply (at the top) one equation, 1 by using the
replacement rule from Fig. 1, with the constraint that we cannot apply equations
with the otherwise attribute while other equations can be applied. To apply an
equation we check if the term we are trying to reduce matches the lefthand side of
the equation and its conditions are fulfilled. If this happens, we obtain a substitution
(from both the matching with the lefthand side and the matching conditions) that
we can apply to the righthand side of the equation. Note that if we can obtain the
transition in the correct module, the forest is not calculated.
op applyEq : Module Module Maybe{Module} Term Term QidSet -> Forest .
op applyEq : Module Module Maybe{Module} Term Term QidSet EquationSet -> Forest .
ceq applyEq(OM, TM, M, T, T’, QS) = mtForest
if reduce(M, T) == reduce(M, T’) .

eq applyEq(OM, TM, CM, T, T’, QS) =
applyEq(OM, TM, CM, T, T’, QS, getEqs(OM)) [owise] .

First, we try to apply the equations without the otherwise attribute. Other-
wise, we check the other equations.

1 Since the module is assumed to be confluent, we can choose any equation and the final result should be
the same.
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ceq applyEq(OM, TM, CM, T, T’, QS, Eq EqS) =
if in?(AtS, QS)
then tree(node(label(AtS) : T -> T’, getOffspring*(F) + 1), F)
else F
fi

if ceq L = R if C [AtS] . := generalEq(Eq) /\
not owise?(AtS) /\
SB := metaMatch(OM, L, T, C, 0) /\
R’ := normal(OM, substitute(R, SB)) /\
F := conditionForest(substitute(C, SB), OM, TM, CM, QS)

createForest(OM, TM, CM, R’, T’, QS) .

where the function in? checks if the equation Eq is suspicious. If this is the case,
a new node corresponding to the applied equation is generated. The forest for the
conditions is generated by the function conditionForest; since it is used after
having checked that the condition is fulfilled (by the function metaMatch above), it
does not check it again. It distinguishes between the different types of conditions.
If the condition is an equation, trees of the reduction of the terms to their normal
forms are generated.
op conditionForest : Condition Module Module Maybe{Module} QidSet -> Forest .
eq conditionForest(T = T’ /\ COND, OM, TM, CM, QS) =

createForest(OM, TM, CM, T, reduce(OM, T), QS)
createForest(OM, TM, CM, T’, reduce(OM, T), QS)
conditionForest(COND, OM, TM, CM, QS) .

The case of the matching conditions is very similar. In the membership case,
we use the version of createForest that builds a forest for a membership inference
where the sort is the least one assignable to the term in the condition.
eq conditionForest(T : S /\ COND, OM, TM, CM, QS) =

createForest(OM, TM, CM, T, type(OM, T), QS)
conditionForest(COND, OM, TM, CM, QS) .

To generate the forest for memberships we use another version of the function
createForest, that mimics the subject reduction rule from Fig. 1 by first computing
the tree for the full reduction of the term (by means of createForest) and then
computing the tree for the membership inference by using an auxiliary version of
createForest that uses the operator declarations and the membership axioms.
Note that if we can infer the type from the correct module, there is no need to
calculate the forest.
op createForest : Module Module Maybe{Module} Term Sort QidSet -> Forest .
op createForest : Module Module Maybe{Module} Term Sort QidSet OpDeclSet

MembAxSet -> Forest .
ceq createForest(OM, TM, CM, T, S, QS) = mtForest
if Ty := type(CM, T) /\ sortLeq(CM, Ty, S) .

ceq createForest(OM, TM, CM, T, S, QS) =
createForest(OM, TM, CM, T, T’, QS)
createForest(OM, TM, CM, T’, S, QS, getOps(OM), getMbs(OM))

if T’ := reduce(OM, T) [owise] .

The auxiliary createForest computes a forest for a membership inference of
the least sort of a term previously fully reduced; this corresponds to a concrete
application of the membership inference rule from Fig. 1. It first checks if the mem-
bership has been inferred by using the operator declarations. If the membership has
not been computed by using these declarations, it checks the membership axioms.
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To check the operators we examine that both the arity and co-arity of the term
and the declaration fit (with function checkTypes) and recursively calculate the
forest generated by the subterms (by using createForest*). Notice that we never
generate a new node for the application of an operator, because we always trust the
signature.
op applyOp : Module Module Maybe{Module} Term Sort QidSet OpDeclSet -> Maybe{Forest} .
ceq applyOp(OM, TM, CM, Q[TL], Ty, QS, op Q : TyL -> Ty [AtS] . ODS) =

createForest*(OM, TM, CM, TL, QS)
if checkTypes(TL, TyL, OM) .

ceq applyOp(OM, TM, CM, CONST, S, QS, op Q : nil -> Ty [AtS] . ODS) = mtForest
if getName(CONST) = Q /\ getType(CONST) = Ty .

eq applyOp(OM, TM, CM, T, S, QS, ODS) = noProof [owise] .

We check the membership axioms in a similar fashion to the equation application,
that is, we only generate a new root below the forest for the conditions if the
membership is suspicious. The unconditional axioms generate leaves of the tree,
while the conditional ones generate nodes with (possibly) non-empty forests.
op applyMb : Module Module Maybe{Module} Term Sort QidSet MembAxSet -> Forest .
ceq applyMb(OM, TM, CM, T’, S, QS, MA MAS) =

if in?(AtS, QS)
then tree(node(label(AtS) : T’ : S, getOffspring*(F) + 1), F)
else F
fi

if cmb T : S if C [AtS] . := generalMb(MA) /\
SB := metaMatch(OM, T, T’, C, 0) /\
F := conditionForest(substitute(C, SB), OM, TM, CM, QS) .

eq applyMb(OM, TM, CM, T, S, QS, MA) = mtForest [owise] .

4.2 Debugging tree navigation

Regarding the navigation of the debugging tree, we have implemented two strategies.
In the top-down strategy the selection of the next node of the debugging tree is
done by the user, thus we do not need any function to compute it. The divide and
query strategy used to traverse the debugging tree selects each time the node whose
subtree’s size is the closest one to half the size of the whole tree, keeping only this
subtree if its root is incorrect, and deleting the whole subtree otherwise.

The function searchBestNode calculates the best node by searching for a subtree
that minimizes the function getDiff, where the first argument is the size of the
whole tree and the second one the size of the subtree.
op getDiff : Nat Nat -> Nat .
eq getDiff(N, N’) = sd(N, 2 * N’) .

Since we use the symmetric difference function, the difference between the size
of the whole tree and the double of the size of the current subtree will initially
decrease (while the double of the size of the subtree is bigger than the size of the
tree) and finally it will increase (when the size of the tree is bigger than the double of
the size of the subtree). Thus, the function searchBestNode keeps the information
about the last difference in order to stop searching in the subtree when the current
difference is bigger than the last one. It uses an auxiliary function that receives the
tree, the total number of nodes in the whole tree, the last and the best difference
so far, the identifier of the best node, and the identifier of the root of the subtree
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it is currently traversing. The last and best difference are initialized with a value
big enough (ten times the number of nodes), in order to avoid the selection of the
initial root as the best node.
op searchBestNode : Tree -> NatList .
op searchBestNode : Tree Nat Nat Nat NatList NatList -> NPair .

eq searchBestNode(tree(node(I, NODES), F)) =
first(searchBestNode(tree(node(I, NODES), F), NODES,

10 * NODES, 10 * NODES, nil, nil)) .

ceq searchBestNode(T, NODES, LAST_DIFF, BEST_DIFF, BEST_NODE, NL) =
< BEST_NODE, BEST_DIFF >

if LAST_DIFF <= getDiff(NODES, getOffspring(T)) .

If the new difference is better than the last one, the function recursively traverses
the forest of the current node with the function searchBestNode*.
ceq searchBestNode(tree(ND, F), NODES, LAST_DIFF, BEST_DIFF, BEST_NODE, NL) =

if NEW_DIFF < BEST_DIFF then
searchBestNode*(F, NODES, NEW_DIFF, NEW_DIFF, NL, NL, 0)

else
searchBestNode*(F, NODES, NEW_DIFF, BEST_DIFF, BEST_NODE, NL, 0)

fi
if NEW_DIFF := getDiff(NODES, offspring(ND)) /\

LAST_DIFF > NEW_DIFF .

5 Conclusions and future work

In this paper we have presented how to use the Maude reflective capabilities to
implement a debugger for Maude functional modules. It complements other de-
bugging techniques for Maude, such as tracing and term coloring, by allowing to
debug a large range of modules (only the strat attribute is forbidden, although
we expect to allow it in a near future). An important advantage of this kind of
debuggers is the help provided in locating the buggy statements, assuming the user
answers correctly the corresponding questions. As far as we know, this is the first
declarative debugger implemented in the same language it debugs.

From the theoretical point of view, the main novelty of our approach w.r.t.
other proposals for declarative debugging of functional languages such as [21,17,18]
is that our debugging tree (the APT ) is obtained from a proof tree in a suitable
semantic calculus, which allows us to prove the correctness and completeness of
the debugging technique. Furthermore, our debugging of MEL specifications has
required an appropriate treatment of memberships which do not appear in previous
works.

The complexity of the debugging process increases with the size of the proof
tree. In the case of the top-down strategy the number of questions for a tree T is
proportional to depth(T )∗degree(T ). In the case of the divide and query strategy the
number of questions is, on average, proportional to log size(T ). Note that the size
of the tree does not depend on the total number of statements but on the number
of applications of suspicious statements involved in the wrong inference. Moreover,
bugs found when reducing complex initial terms can be, in general, reproduced with
simpler terms which give rise to smaller proof trees.
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We can minimize the number of questions by trusting statements or keeping
track of the questions already answered, in order to avoid asking the same question
twice.

Since one of the requirements of this kind of debuggers is the interaction with an
oracle, that typically is the user, one of the principal aspects that must be improved
is the user interface. We plan to provide a complementary graphical interface that
allows the user to navigate the tree with more freedom.

We plan to extend our framework by studying how to debug system modules,
which correspond to rewriting logic specifications and have rules in addition to
memberships and equations. These rules can be non-terminating and non-confluent,
and thus behave very differently from the statements in the specifications we handle
here. Indeed, if the rules of a system module are confluent and terminating, we can
use the current version of our debugger by first translating the rewrite rules into
equations.

In the context of general system modules, we also plan to study how to debug
missing answers [14] in addition to the wrong answers we have treated thus far.
That is, the non-determinism inherent to a system module implies that a term
can be rewritten in several different ways. If the specification does not fulfill the
intended model, it may be the case that not all the possible solutions are reached.
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